
1

Building File Systems and Distributed Data Management Systems

for Performance and Reliability

龙星计划课程龙星计划课程龙星计划课程龙星计划课程: 文件系统和分布式数据管理系统文件系统和分布式数据管理系统文件系统和分布式数据管理系统文件系统和分布式数据管理系统

Song Jiang
Department of Electrical and Computer Engineering Wayne State University

2

What is the course about?

• Learn how a data center is built to provide Internet-wide scalable
and secure services.

� We are in the big data era and most Internet services rely on large volume of
data.

� The stack of a data center includes:

� Computing platform (individual servers and their local file system)

� Distributed system infrastructure, such as GFS, BigTable, MapReduce, and Pregel.

� Services, such as search, advertising, email, maps, video, chat, blogger.

� We will study how the distributed system infrastructure is built from bottom to
the top.

• Get an insider’s view with case studies

� Look at design and implementation of real-life systems, mostly Google’s.

• Have a taste of what the research in the CS/CE area looks like

� Cultivate your curiosity

3

What is the course not about?

• This is not a tutorial about Ext3/4/BtrFS, GFS/HDFS,
BigTtable/Hbase.

• We do not cover comprehensively all aspects of a file system
and distributed systems.

• We do not follow every details of specific systems.

Instead, this course will focus on understanding the
issues, design choices, and problem solving skills.

4

Why you should take the course?

• Data center is the most critical IT infrastructure of the society.

• Our digital life depends on data centers,

� almost all Internet-based services, including cloud computing.

• The course will cover from fundamental system concepts to techniques
enabling very-large-large systems.

� Issues in a file/storage system: data replication and consistency, failure
management, system reliability, scalability, availability, and efficiency.

• Research experience will go a long way for your career development.

� Many people who program with Internet don’t understand how things happen
within a data center.

� Students would be inspired to keep learning and to contribute.

5

Course Outline

1. File Systems

� Files and directories

� File system implementation

� FSCK and journaling

� Log-structured file system (LFS)

� Data integrity and protection

2. Distributed File Systems and Others

3. Key-Value Data Management Systems

6

Building File Systems and Distributed Data Management Systems

for Performance and Reliability

龙星计划课程龙星计划课程龙星计划课程龙星计划课程: 文件系统和分布式数据管理系统文件系统和分布式数据管理系统文件系统和分布式数据管理系统文件系统和分布式数据管理系统

Lecture 1: Lecture 1: Lecture 1: Lecture 1: File SystemsFile SystemsFile SystemsFile Systems

File-System Abstraction

What is a File?
Array of bytes.
!

Ranges of bytes can be read/written.
!

File system consists of many files.

What is a File?
Array of bytes.
!

Ranges of bytes can be read/written.
!

File system consists of many files.
!

Files need names so programs can
choose the right one.

File Names
Three types of names:
 - inode
 - path
 - file descriptor

File Names
Three types of names:
 - inode
 - path
 - file descriptor

Inodes
Each file has exactly one inode number.
!

Inodes are unique (at a given time) within a FS.
!

Different file system may use the same number,
numbers may be recycled after deletes.

Inodes
Each file has exactly one inode number.
!

Inodes are unique (at a given time) within a FS.
!

Different file system may use the same number,
numbers may be recycled after deletes.
!

Show inodes via stat.

What does “i” stand for?
“In truth, I don't know either. It was just a term that
we started to use. ‘Index’ is my best guess,
because of the slightly unusual file system
structure that stored the access information of files
as a flat array on the disk…”
!

~ Dennis Ritchie

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 file

 file

in
od

e
nu

m
be

r

File API (attempt 1)
read(int inode, void *buf, size_t nbyte)
!
write(int inode, void *buf, size_t nbyte)
!
seek(int inode, off_t offset)

File API (attempt 1)
read(int inode, void *buf, size_t nbyte)
!
write(int inode, void *buf, size_t nbyte)
!
seek(int inode, off_t offset)

note: seek does not cause disk seek
unless followed by a read/write

File API (attempt 1)
read(int inode, void *buf, size_t nbyte)
!
write(int inode, void *buf, size_t nbyte)
!
seek(int inode, off_t offset)

Disadvantages?

File API (attempt 1)
read(int inode, void *buf, size_t nbyte)
!
write(int inode, void *buf, size_t nbyte)
!
seek(int inode, off_t offset)

Disadvantages?
 - names hard to remember
 - everybody has the same offset
 - collisions (not hierarchical)

File API (attempt 1)
pread(int inode, void *buf,
 off_t offset, size_t nbyte)
pwrite(int inode, void *buf,
 off_t offset size_t nbyte)
seek(int inode, off_t offset)

Disadvantages?
 - names hard to remember
 - everybody has the same offset
 - collisions (not hierarchical)

File Names
Three types of names:
 - inode
 - path
 - file descriptor

Paths
String names are friendlier than number names.

Paths
String names are friendlier than number names.
!

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “readme.txt”: 3, “hello”: 0, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

 “readme.txt”: 3, “hello”: 0, …

Paths
String names are friendlier than number names.
!

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)

Paths
String names are friendlier than number names.
!

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)
!

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 0

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 1

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 2

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 3

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 4

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 5

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

 “bashrc”: 6, …

 # settings: …

in
od

e
nu

m
be

r

 “etc”: 0, …

read /etc/bashrc

reads: 6

Paths
String names are friendlier than number names.
!

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)
!

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.

Paths
String names are friendlier than number names.
!

Store path-to-inode mappings in a predetermined
“root” file (typically inode 2)
!

Generalize! Store path-to-inode mapping in many
files. Call these special files directories.
!

Reads for getting final inode called “traversal”.

Directory Calls
mkdir: create new directory
!

readdir: read/parse directory entries
!

Why no writedir?

Special Directory Entries
Tylers-MacBook-Pro:scratch trh$ ls -la
total 728
drwxr-xr-x 34 trh staff 1156 Oct 19 11:41 .
drwxr-xr-x+ 59 trh staff 2006 Oct 8 15:49 ..
-rw-r--r--@ 1 trh staff 6148 Oct 19 11:42 .DS_Store
-rw-r--r-- 1 trh staff 553 Oct 2 14:29 asdf.txt
-rw-r--r-- 1 trh staff 553 Oct 2 14:05 asdf.txt~
drwxr-xr-x 4 trh staff 136 Jun 18 15:37 backup
…

File API (attempt 2)
pread(char *path, void *buf,
 off_t offset, size_t nbyte)
!
pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

File API (attempt 2)
pread(char *path, void *buf,
 off_t offset, size_t nbyte)
!
pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

Disadvantages?

File API (attempt 2)
pread(char *path, void *buf,
 off_t offset, size_t nbyte)
!
pwrite(char *path, void *buf,
 off_t offset size_t nbyte)

Disadvantages? Expensive traversal! Goal: traverse once.

File Names
Three types of names:
 - inode
 - path
 - file descriptor

File Descriptor (fd)
Idea: do traversal once, and store inode in
descriptor object. Do reads/writes via descriptor.
Also remember offset.
!

A file-descriptor table contains pointers to file
descriptors.
!

The integers you’re used to using for file I/O are
indexes into this table.

FD Table (xv6)
struct file {
 ...
 struct inode *ip;
 uint off;
};
!
// Per-process state
struct proc {
 ...
 struct file *ofile[NOFILE]; // Open files
 ...
}

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

Code Snippet
int fd1 = open(“file.txt”); // returns 3

0
1
2
3
4
5

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

“file.txt” also points here

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);

0
1
2
3
4
5

 offset = 12
 inode =

fds
fd table

 location = …
 size = …

inode

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4

0
1
2
3
4
5

 offset = 12
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

Code Snippet
int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

0
1
2
3
4
5

 offset = 12
 inode =

 offset = 0
 inode =

fds
fd table

 location = …
 size = …

inode

File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode)
!
read(int fd, void *buf, size_t nbyte)
!
write(int fd, void *buf, size_t nbyte)
!
close(int fd)

File API (attempt 3)
int fd = open(char *path, int flag, mode_t mode)
!
read(int fd, void *buf, size_t nbyte)
!
write(int fd, void *buf, size_t nbyte)
!
close(int fd) advantages:

 - string names
 - hierarchical
 - traverse once
 - different offsets

Deleting Files
There is no system call for deleting files!

Deleting Files
There is no system call for deleting files!
!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).

Deleting Files
There is no system call for deleting files!
!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).
!

Paths are deleted when: unlink() is called.
!

FDs are deleted when: ???

Deleting Files
There is no system call for deleting files!
!

Inode (and associated file) is garbage collected
when there are no references (from paths or fds).
!

Paths are deleted when: unlink() is called.
!

FDs are deleted when: close(), or process quits

Deleting Directories
Directories can also be unlinked with unlink().
But only if empty!
!

How does “rm -rf” work?
!

Let’s find out with strace!

void recursiveDelete(char* dirname) {
 char filename[FILENAME_MAX];
 DIR *dp = opendir (dirname);
 struct dirent *ep;
 while(ep = readdir (dp)) {
 snprintf(filename, FILENAME_MAX,
 "%s/%s", dirname, ep->d_name);
 if(is_dir(ep))
 recursiveDelete(filename);
 else
 unlink(filename);
 }
 unlink(dirname);
}

my worst bug ever

Many File Systems

Many File Systems
Users often want to use many file systems.
!
For example:
 - main disk
 - backup disk
 - AFS
 - thumb drives
!
What is the most elegant way to support this?

Many File Systems: Approach 1

http://www.ofzenandcomputing.com/burn-files-cd-dvd-windows7/

http://www.ofzenandcomputing.com/burn-files-cd-dvd-windows7/

Many File Systems: Approach 2
Idea: stitch all the file systems together into a super file system!

Many File Systems: Approach 2
Idea: stitch all the file systems together into a super file system!
!
sh> mount
/dev/sda1 on / type ext4 (rw)
/dev/sdb1 on /backups type ext4 (rw)
AFS on /home/tyler type afs (rw)
harter@galap-1:~/537_projects /home/tyler/537 type sshfs (rw)

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler
harter@galap-1:… on /home/tyler/537

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

Special Calls

fsync
Write buffering improves performance (why?).
But what if we crash before the buffers are flushed?
!
fsync(int fd) forces buffers to flush to disk, and
(usually) tells the disk to flush it’s write cache too.
!
This makes data durable.

rename
rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 “oldname”: 3, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
 # settings: …

in
od

e
nu

m
be

r

 “newname”: 3

rename
rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file
!

rename
rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file
!

What if we crash?

rename
rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file
!

What if we crash?
FS does extra work to guarantee atomicity.

Atomic File Update
Say we want to update file.txt.
!

1. write new data to new file.txt.tmp file
2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it

Concurrency
How can multiple processes avoid updating the
same file at the same time?

Concurrency
How can multiple processes avoid updating the
same file at the same time?
!

Normal locks don’t work, as developers may have
developed their programs independently.

Concurrency
How can multiple processes avoid updating the
same file at the same time?
!

Normal locks don’t work, as developers may have
developed their programs independently.
!

Use flock(), for example:
 - flock(fd, LOCK_EX)
 - flock(fd, LOCK_UN)

Summary
Using multiple types of name provides
 - convenience
 - efficiency
!

Mount and link features provide flexibility.
!

Special calls (fsync, rename, flock) let developers
communicate special requirements to FS.

Implementation

Implementation
1. On-disk structures
 - how do we represent files, directories?
!

2. Access methods
 - what steps must reads/writes take?

Disk Structures

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D D D D D D

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

inode!
16

inode!
17

inode!
18

inode!
19

inode!
20

inode!
21

inode!
22

inode!
23

inode!
24

inode!
25

inode!
26

inode!
27

inode!
28

inode!
29

inode!
30

inode!
31

Inodes are typically 128
or 256 bytes (depends
on the FS).
!

So 16 - 32 inodes per
inode block.

Inode Block

inode!
16

inode!
17

inode!
18

inode!
19

inode!
20

inode!
21

inode!
22

inode!
23

inode!
24

inode!
25

inode!
26

inode!
27

inode!
28

inode!
29

inode!
30

inode!
31

Inodes are typically 128
or 256 bytes (depends
on the FS).
!

So 16 - 32 inodes per
inode block.

Inode Block

Inode
type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

file or directory?

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

user and permissions

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

size in bytes and blocks

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

access time, create time

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

how many paths

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

N data blocks

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

Assume 4-byte addrs.
What is an upper bound

on the file size?
(assume 256-byte inodes)

type!
uid!
rwx!
size!

blocks!
time!

ctime!
links_count!

addrs[N]

Inode

Assume 4-byte addrs.
What is an upper bound

on the file size?
(assume 256-byte inodes)

!
How to get larger files?

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

inode!

data! data! data! data!

inode!

indirect! indirect! indirect! indirect!

inode!

indirect! indirect! indirect! indirect!

indirects are stored in
regular data blocks.

inode!

indirect! indirect! indirect! indirect!

what if we want to
optimize for small files?

inode!

indirect!data! data! data!

what if we want to
optimize for small files?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte sectors. What is offset for inode
with number 0?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte sectors. What is offset for inode
with number 4?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte sectors. What is offset for inode
with number 40?

Various Link Structures
Tree (usually unbalanced)!
 - with indirect blocks
 - e.g., ext3
!
Extents!
 - store offset+size pairs
 - e.g., ext4
!
Linked list!
 - each data block points to the next
 - e.g., FAT

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

Directories
File systems vary.
!

Common design: just store directory entries in files.
!

Various formats could be used
 - lists
 - b-trees

Simple List Example

valid name inode
1
1
1

.
..

foo

134
35
80

1 bar 23

Simple List Example

valid name inode
1
1
0

.
..

foo

134
35
80

1 bar 23

unlink(“foo”)

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

Allocation
How do we find free data blocks or free inodes?

Allocation
How do we find free data blocks or free inodes?
!

Free list.
!

Bitmaps.
!

Tradeoffs?

Bitmaps

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Data Bitmap

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D d I I I I I

Inode Bitmap

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D i d I I I I I

Opportunity for Inconsistency (fsck)

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D i d I I I I I

Structures
What data is likely to be read frequently?
 - data block
 - inode table
 - indirect block
 - directories
 - data bitmap
 - inode bitmap
 - superblock

Superblock
Need to know basic FS metadata, like:
 - block size
 - how many inodes are there
 - how much free data
!

Store this in a superblock

Super Block

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D i d I I I I I

Super Block

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

S i d I I I I I

Structure Overview
Structures:
 - superblock
 - data block
 - data bitmap
 - inode table
 - inode bitmap
 - indirect block
 - directories

Structure Overview
Core Performance

Super Block!

Structure Overview
Core Performance

Super Block!

Data Block!

Structure Overview
Core Performance

Super Block!

Data Block! Data Bitmap!

Structure Overview
Core Performance

Super Block!

Data Block! Data Bitmap!

Inode Table!

Structure Overview
Core Performance

Super Block!

Data Block! Data Bitmap!

Inode Table! Inode Bitmap!

Structure Overview
Core Performance

Super Block!

Data Block!

Inode Table!

Data Bitmap!

Inode Bitmap!

directories

Structure Overview
Core Performance

Super Block!

Data Block!

Inode Table!

Data Bitmap!

Inode Bitmap!

directories indirects

Operations

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

mkfs
Different version for each file system
(e.g., mkfs.ext4, mkfs.xfs, mkfs.btrfs, etc)
!

Initialize metadata (bitmaps, inode table).
!

Create empty root directory.
!

Demo…

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler

/

backups home

bak1 bak2 bak3

etc bin

tyler

.bashrc

/dev/sda1 on /
/dev/sdb1 on /backups
AFS on /home/tyler
harter@galap-1:… on /home/tyler/537

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

mount
Add the file system to the FS tree.
!

Minimally requires reading superblock.
!

Demo…

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

write

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

bar
data

read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

bar
data

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

bar
data

read
read
write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

bar
data

read

write

read
write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar

bar
data

read
read
write

write
write

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

read
read

read

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar

data
bar

read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar

data
bar

read
read

Operations
FS
 - mkfs
 - mount
!
File
 - create
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Efficiency

Efficiency

How can we avoid this excessive I/O for basic ops?

Efficiency

How can we avoid this excessive I/O for basic ops?
!
Cache for:
 - reads
 - write buffering

Structures
What data is likely to be read frequently?
 - superblock
 - data block
 - data bitmap
 - inode table
 - inode bitmap
 - indirect block
 - directories

Unified Page Cache
Instead of a dedicated file-system cache, draw
pages from a common pool for FS and processes.
!

API change:
 - read
 - shrink_cache (Linux)

LRU Example
Ops

read 1
read 2
read 3
read 4
shrink
shrink
read 1
read 2
read 3
read 4

Hits
miss
miss
miss
miss

-
-

miss
miss
hit
hit

State
1
1,2
1,2,3
1,2,3,4
2,3,4
3,4
1,3,4
1,2,3,4
1,2,3,4
1,2,3,4

Write Buffering
Why does procrastination help?

Write Buffering
Why does procrastination help?
!
Overwrites, deletes, scheduling.
!
Shared structs (e.g., bitmaps+dirs) often overwritten.

Write Buffering
Why does procrastination help?
!
Overwrites, deletes, scheduling.
!
Shared structs (e.g., bitmaps+dirs) often overwritten.
!
We decide: how much to buffer, how long to buffer…
 - tradeoffs?

Summary/Future
We’ve described a very simple FS.
 - basic on-disk structures
 - the basic ops
!

Future questions:
 - how to allocate efficiently?
 - how to handle crashes?

[537] Fast File System
Chapter 41
Tyler Harter

11/10/14

Review Basic FS

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

[traverse]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

[traverse]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

[traverse]

bar does not already exist

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

[allocate inode]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

[populate inode]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

write

read
write

write

[add bar to /foo]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read

[append? yes]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read
write

[allocate block]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read
write

write

[point to block]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read
write

write
write

[write to block]

Review Locality

Locality Types

time
ad

dr
es

s

…

time

ad
dr

es
s

…

Locality Types

time
ad

dr
es

s

…Spatial Locality

time

ad
dr

es
s

…
Temporal Locality

Locality Usefulness
What types of locality are useful for a cache?

What types of locality are useful for a disk?

Order Matters Now

time
ad

dr
es

s

…

time

ad
dr

es
s

…

Order Matters Now

time
ad

dr
es

s

…Fast

time

ad
dr

es
s

…Slow

Policy: Choose Inode, Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I

Bad File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0

123

inode

Better File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Best File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Fast File System

System Building
noob approach!
1. get idea
2. build it!

System Building
noob approach!
1. get idea
2. build it!
!

pro approach!
1. identify state of the art
2. measure it, identify problems
3. get idea
4. build it!

System Building
noob approach!
1. get idea
2. build it!
!

pro approach!
1. identify state of the art
2. measure it, identify problems
3. get idea
4. build it! measure then build

Old FS
State of the art: original UNIX file system.

Data Blockssuper
block inodes

0 N

Layout

Free lists are embedded in inodes, data blocks.
Data blocks are 512 bytes.

Old FS
State of the art: original UNIX file system.

Old FS
State of the art: original UNIX file system.
!

Measure throughput for file reads/writes.
!

Compare to theoretical max, which is…

Old FS
State of the art: original UNIX file system.
!

Measure throughput for file reads/writes.
!

Compare to theoretical max, which is…
disk bandwidth

Old FS
State of the art: original UNIX file system.
!

Measure throughput for file reads/writes.
!

Compare to theoretical max, which is…
disk bandwidth
!

Old UNIX file system: only 2% of potential. Why?

Measurement 1
What is performance before/after aging?

Measurement 1
What is performance before/after aging?
!

New FS: 17.5% of disk bandwidth
Few weeks old: 3% of disk bandwidth

Measurement 1
What is performance before/after aging?
!

New FS: 17.5% of disk bandwidth
Few weeks old: 3% of disk bandwidth
!

FS is probably becoming fragmented over time.
!

Free list makes contiguous chunks hard to find.

Measurement 1
What is performance before/after aging?
!

New FS: 17.5% of disk bandwidth
Few weeks old: 3% of disk bandwidth
!

FS is probably becoming fragmented over time.
!

Free list makes contiguous chunks hard to find.

hacky solution:
occasional defrag

How does block size affect performance?
Try doubling it!

Measurement 2

How does block size affect performance?
Try doubling it!
!

Performance more than doubled.

Measurement 2

How does block size affect performance?
Try doubling it!
!

Performance more than doubled.

Measurement 2

How does block size affect performance?
Try doubling it!
!

Performance more than doubled.
!

Logically adjacent blocks are probably not
physically adjacent.

Measurement 2

How does block size affect performance?
Try doubling it!
!

Performance more than doubled.
!

Logically adjacent blocks are probably not
physically adjacent.

Measurement 2

How does block size affect performance?
Try doubling it!
!

Performance more than doubled.
!

Logically adjacent blocks are probably not
physically adjacent.
!

Smaller blocks cause more indirect I/O.

Measurement 2

Old FS Summary
Observations:
 - long distance between inodes/data
 - inodes in single dir not close to one another
 - small blocks (512 bytes)
 - blocks laid out poorly
 - free list becomes scrambled, causes random alloc
!
Result: 2% of potential performance!
(and worse over time)

Problem: old FS treats disk like RAM!

Solution: a disk-aware FS

Design Questions
How to use big blocks without wasting space.
!

How to place data on disk.

Data Blockssuper
block inodes

0 N

Technique 1: Bitmaps

Data Blockssuper
block inodes

0 N

Technique 1: Bitmaps

Use bitmaps instead of free list.
Provides more flexibility, with more global view.

bitmaps

Techniques
Bitmaps

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

fast

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slow

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slower

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slowest

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

Data Blockssuper
block inodes

0 G

Technique 2: Groups

bitmaps

now: one (smallish) group

Technique 2: Groups

DS IB

zoom out

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Technique 2: Groups

DS IB

strategy: allocate inodes and data blocks in same group.

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

Groups
In FFS, groups were ranges of cylinders
 - called cylinder group
!

In ext2-4, groups are ranges of blocks
 - called block group

Groups
In FFS, groups were ranges of cylinders
 - called cylinder group
!

In ext2-4, groups are ranges of blocks
 - called block group

Techniques
Bitmaps
Locality groups

Technique 3: Super Rotation

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Technique 3: Super Rotation

DS IB

Is it useful to have multiple super blocks?

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Technique 3: Super Rotation

DS IB

Is it useful to have multiple super blocks?
Yes, if some (but not all) fail.

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Problem

Problem
All super-block
copies are on
the top platter.
What if it dies?

Problem
All super-block
copies are on
the top platter.
What if it dies?

solution: for each group, store super-block at different offset.

Techniques
Bitmaps
Locality groups
Rotated super

Block Size
Doubling the block size for the old FS over
doubled performance.
!

Strategy: choose block size so we never have to
read more than two indirect blocks to find a data
block (2 levels of indirection max). Want 4GB files.
!

How large is this?

Techniques
Bitmaps
Locality groups
Rotated super
Large blocks

Large Blocks
Why not make blocks huge?

Most file are
very small.

Large Blocks
Why not make blocks huge?
Lots of waste in remainder of blocks.

Large Blocks

Pe
rc

en
t

0

12.5

25

37.5

50

Block Size

512 1024 2048 4096

Why not make blocks huge?
Lots of waste in remainder of blocks.

Large Blocks

Pe
rc

en
t

0

12.5

25

37.5

50

Block Size

512 1024 2048 4096

Why not make blocks huge?
Lots of waste in remainder of blocks.
!

Time vs. Space
Tradeoffs…

Solution: Fragments
Hybrid!
!

Introduce “fragment” for files that use parts of
blocks.
!

Only tail of file uses fragments.

Techniques
Bitmaps
Locality groups
Rotated super
Large blocks
Fragments

Smart Policy

DS IB

Where should new inodes and data blocks go?

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Strategy
Put related pieces of data near each other.

Strategy
Put related pieces of data near each other.
!

Rules:
1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.
!

Strategy
Put related pieces of data near each other.
!

Rules:
1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.
!

Sound good?

Challenge
The file system is one big tree.
!

All directories and files have a common root.
!

In some sense, all data in the same FS is related.

Challenge
The file system is one big tree.
!

All directories and files have a common root.
!

In some sense, all data in the same FS is related.
!

Trying to put everything near everything else will
leave us with the same mess we started with.

Revised Strategy

Put more-related pieces of data near each other.
!

Put less-related pieces of data far from each other.

Revised Strategy

Put more-related pieces of data near each other.
!

Put less-related pieces of data far from each other.
!

FFS developers used their best judgement.

FFS: Two-Level Allocator
Level 1: decide which group
!

Level 2: decide where in group

inode dir

file inode

dir inode

B1

B2

B3

B1

B2
pointer

related

inode dir

file inode

dir inode

B1

B2

B3

B1

B2

many

pointer

related

inode dir

file inode

dir inode

B1

B2

B3

B1

B2

Where to cut the tree and start
growing into another group?

pointer

related

many

inode dir

file inode

dir inode

B1

B2

B3

B1

B2

FFS puts dir inodes
in a new group.

pointer

related

many break

inode dir

file inode

dir inode

B1

B2

B3

B1

B2

“ls” is fast on directories
with many files.

pointer

related

many break

Preferences
File inodes: allocate in same group with dir
!

Dir inodes: allocate in new group with fewer
inodes than the average group
!

First data block: allocate near inode
!

Other data blocks: allocate near previous block

Problem: Large Files
A single large file can use nearly all of a group.
!

This displaces data for many small files.
!

It’s better to do one seek for the large file than one
seek for each of many small files.

inode dir

file inode

dir inode

B1

B2

B3

B1

B2
pointer

related

many break

inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

Define “large” as requiring an indirect.

inode dir

file inode

dir inode

B1

B2

Ind

B1

B2

many

pointer

related

B3

B4
break

br
ea

k

Starting at indirect (e.g., after 48 KB),
put blocks in a new block group.

Conclusion
First disk-aware file system.
!

FFS inspired modern files systems, including ext2
and ext3.
!

FFS also introduced several new features:
 - long file names
 - atomic rename
 - symbolic links

Advice
All hardware is unique.
!
Treat disk like disk!
!
Treat flash like flash!
!
Treat random-access memory like random-access memory!

Advice
All hardware is unique.
!
Treat disk like disk!
!
Treat flash like flash!
!
Treat random-access memory like random-access memory!
(actually don’t -- the name is a lie)

Redundancy

Redundancy
Definition: if A and B are two pieces of data, and
knowing A eliminates some or all the values B could
B, there is redundancy between A and B.
!
RAID examples:
 - mirrored disk (complete redundancy)
 - parity blocks (partial redundancy)

Subtle Example
Definition: if A and B are two pieces of data, and
knowing A eliminates some or all the values B could
B, there is redundancy between A and B.
!
Superblock: field contains total blocks in FS.
!
Inode: field contains pointer to data block.
!
Is there redundancy between these fields? Why?

Subtle Example
Superblock: field contains total blocks in FS.
DATA = ???
!
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, UINT_MAX}

Subtle Example
Superblock: field contains total blocks in FS.
DATA = N
!
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, UINT_MAX}

Subtle Example
Superblock: field contains total blocks in FS.
DATA = N
!
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, N - 1}
!
Pointers to block N or after are invalid!

Subtle Example
Superblock: field contains total blocks in FS.
DATA = N
!
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, N - 1}
!
Pointers to block N or after are invalid!
!
Total-blocks field has redundancy with inode pointers.

Problem 3
Give 5 examples of redundancy in FFS
(or files systems in general).

Problem 3
Give 5 examples of redundancy in FFS
(or files systems in general).
!

Dir entries AND inode table.
Dir entries AND inode link count.
Data bitmap AND inode pointers.
Data bitmap AND group descriptor.
Inode file size AND inode/indirect pointers.
…

Redundancy Uses
Redundancy may improve:
 - performance
 - reliability
!
Redundancy hurts:
 - capacity

Redundancy Uses
Redundancy may improve:
 - performance (e.g., FFS group descriptor)
 - reliability (e.g., RAID-5 parity)
!
Redundancy hurts:
 - capacity

Redundancy Challenges
Redundancy implies:
certain combinations of values are illegal.
!

Names for bad combinations:
 - contradictions
 - inconsistencies

Example
Superblock: field contains total blocks in FS.
DATA = 1024
!
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, 1023}

Example
Superblock: field contains total blocks in FS.
DATA = 1024
!
Inode: field contains pointer to data block.
DATA = 241
!
Consistent.

Example
Superblock: field contains total blocks in FS.
DATA = 1024
!
Inode: field contains pointer to data block.
DATA = 2345
!
Inconsistent.

Consistency Challenge
We may need to do several disk writes to redundant
blocks.
!
We don’t want to be interrupted between writes.

Consistency Challenge
We may need to do several disk writes to redundant
blocks.
!
We don’t want to be interrupted between writes.
!
Things that interrupt us:
 - power loss
 - kernel panic, reboot
 - user hard reset

Problem 4
Suppose we are appending to a file, and must
update the following:
 - inode
 - data bitmap
 - data block
!

What happens if we crash after only updating
some of these?

Partial Update
a) bitmap: lost block
b) data: nothing bad
c) inode: point to garbage, somebody else may use
d) bitmap and data: lost block
e) bitmap and inode: point to garbage
f) data and inode: somebody else may use

Partial Update
a) bitmap: lost block
b) data: nothing bad
c) inode: point to garbage, somebody else may use
d) bitmap and data: lost block
e) bitmap and inode: point to garbage
f) data and inode: somebody else may use
!
What is in “garbage”?

FSCK

fsck
FSCK = file system checker.
!
Strategy: after a crash, scan whole disk for
contradictions.

fsck
FSCK = file system checker.
!
Strategy: after a crash, scan whole disk for
contradictions.
!
For example, is a bitmap block correct?
!
Read every valid inode+indirect. If an inode points to
a block, the corresponding bit should be 1

fsck
Other checks:
!

Do superblocks match?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Do directories contain “.” and “..”?
…

fsck
Other checks:
!

Do superblocks match?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Do directories contain “.” and “..”?
…
!

How to solve problems?

Link Count (example 1)

Dir Entry

Dir Entry

inode!
link_count = 1

Link Count (example 1)

Dir Entry

Dir Entry

inode!
link_count = 2 fix!

Link Count (example 2)

inode!
link_count = 1

Link Count (example 2)

inode!
link_count = 1

Dir Entry fix!

Link Count (example 2)

inode!
link_count = 1

Dir Entry fix!

ls -l /
total 150
drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/
drwx------. 2 16384 Aug 1 10:57 lost+found/
...

Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001100

for block 123

Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001101

for block 123

fix!

Data Bitmap

inode!
link_count = 1

block!
(number 123)

data bitmap!
0011001101

for block 123

fix! why in inode
the authority?

Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)

copy

Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)

Duplicate Pointers

inode!
link_count = 1

block!
(number 123)

inode!
link_count = 1

block!
(number 789)

fix!

Bad Pointer

inode!
link_count = 1

super block!
tot-blocks=8000

9999

Bad Pointer

inode!
link_count = 1

super block!
tot-blocks=8000

fix!

fsck
It’s not always obvious how to patch the file system
back together.
!

We don’t know the “correct” state, just a consistent
one.

fsck
It’s not always obvious how to patch the file system
back together.
!

We don’t know the “correct” state, just a consistent
one.
!

Easy way to get consistency: reformat disk!

fsuck is very slow…

Checking a 600GB disk takes ~70 minutes.

ffsck: The Fast File System Checker
!

Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris Dragga, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Journaling

Goals
It’s ok to do some recovery work after crash,
but not to read entire disk.
!

Don’t just get to a consistent state, get to a
“correct” state.

Goals
It’s ok to do some recovery work after crash,
but not to read entire disk.
!

Don’t just get to a consistent state, get to a
“correct” state.
!

Strategy: atomicity.

Atomicity
Concurrency definition:
operations in critical sections are not interrupted
by operations on other critical sections.
!

Persistence definition:
collections of writes are not interrupted by
crashes. Get all new or all old data.

Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states

Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states

fsck gives consistency. Atomicity gives us A or B.

Consistency vs Correctness
Say a set of writes moves the disk from state A to B.

A B

consistent states

all states

fsck gives consistency. Atomicity gives us A or B.

empty

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!

General Strategy
Never delete ANY old data, until,
ALL new data is safely on disk.
!

Ironically, this means we’re adding redundancy
to fix the problem caused by redundancy.

Fight Redundancy with Redundancy

Want to replace X with Y. Original:

DISK

X f(X)
redundant

Fight Redundancy with Redundancy

Want to replace X with Y. Original:

DISK

X f(X) good time to crash

Fight Redundancy with Redundancy

Want to replace X with Y. Original:

DISK

Y f(X) bad time to crash

Fight Redundancy with Redundancy

Want to replace X with Y. Original:

DISK

Y f(Y) good time to crash

Fight Redundancy with Redundancy

Want to replace X with Y.

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

X f(X) good time to crash

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

f(Y)

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

Y f(X)

Y

good time to crash

f(Y)

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y)

Y

good time to crash

f(Y)

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

f(Y)

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

Fight Redundancy with Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) With journaling, it’s
always a good time

to crash!

Problem 5
Write an algorithm for a simple case of atomic
block update.

Problem 5
Write an algorithm for a simple case of atomic
block update. Bad example:

Time Block 0: Alice Block 1: Bob extra extra extra
1 12 3 0 0 0
2 12 5 0 0 0
3 10 5 0 0 0

Problem 5
Write an algorithm for a simple case of atomic
block update. Bad example:

Time Block 0: Alice Block 1: Bob extra extra extra
1 12 3 0 0 0
2 12 5 0 0 0
3 10 5 0 0 0

don’t crash here!

Journal New Data
Time Block 0: Alice Block 1: Bob extra extra extra

1 12 3 0 0 0
2 12 3 10 0 0
3 12 3 10 5 0
4 12 3 10 5 1
5 10 3 10 5 1
6 10 5 10 5 1
7 10 5 10 5 0

void update_accounts(int cash1, int cash2) {
 write(cash1 to block 2) // Alice backup
 write(cash2 to block 3) // Bob backup
 write(1 to block 4) // backup is safe
 write(cash1 to block 0) // Alice
 write(cash2 to block 1) // Bob
 write(0 to block 4) // discard backup
}
!
void recovery() {
 if(read(block 4) == 1) {
 write(read(block 2) to block 0) // restore Alice
 write(read(block 3) to block 1) // restore Bob
 write(0 to block 4) // discard backup
 }
}

Journal Old Data
Time Block 0: Alice Block 1: Bob extra extra extra

1 12 3 0 0 0
2 12 3 12 0 0
3 12 3 12 3 0
4 12 3 12 3 1
5 10 3 12 3 1
6 10 5 12 3 1
7 10 5 12 3 0

Terminology
The extra blocks we use are called a “journal”.
!

The writes to it are a “journal transaction”.
!

The last block where we write the valid bit is called
a “journal commit block”.
!

File systems typically write new data to the journal.

New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal

New Layout

0 5

0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

B 5,2 A B 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

New Layout

A
0 5

B 5,2 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A
0 5

B 4,6 A B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A
0 5

B 4,6 C B 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

C A
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

C A T
0 5

B 4,6 C T 1
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Enforcing total ordering is inefficient. Why?

Ordering

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9,10,11 | 12 | 4,6 | 12

Use barriers at key points in time. Barrier does cache flush.

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

Checksum

C A T
0 5

B 4,6 C T 0
6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11 | 12 | 4,6 | 12

Checksum

C A T
0 5

B 4,6 C T (ck)
6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11,12 | 4,6 | 12

In last transaction block, store checksum of rest of transaction.

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

Write Buffering
Note: after journal write, there is no rush to checkpoint.
!
Journaling is sequential, checkpointing is random.
!
Solution? Delay checkpointing for some time.

Write Buffering
Note: after journal write, there is no rush to checkpoint.
!
Journaling is sequential, checkpointing is random.
!
Solution? Delay checkpointing for some time.
!
Difficulty: need to reuse journal space.

Write Buffering
Note: after journal write, there is no rush to checkpoint.
!
Journaling is sequential, checkpointing is random.
!
Solution? Delay checkpointing for some time.
!
Difficulty: need to reuse journal space.
!
Solution: keep many transactions for un-checkpointed data.

Circular Buffer

Journal:

0 128 MB

T1

Circular Buffer

Journal:

0 128 MB

transaction!

T1

Circular Buffer

Journal:

0 128 MB

T2T1

Circular Buffer

Journal:

0 128 MB

transaction!

T2T1

Circular Buffer

Journal:

0 128 MB

T3T2T1

Circular Buffer

Journal:

0 128 MB

transaction!

T3T2T1

Circular Buffer

Journal:

0 128 MB

T4T3T2T1

Circular Buffer

Journal:

0 128 MB

transaction!

T4T3T2T1

Circular Buffer

Journal:

0 128 MB

T4T3T2

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

T4T3T2

Circular Buffer

Journal:

0 128 MB

T5 T4T3T2

Circular Buffer

Journal:

0 128 MB

transaction!

T5 T4T3T2

Circular Buffer

Journal:

0 128 MB

T5 T4T3

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

Physical Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block TxE

(checksum)

Physical Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block TxE

(checksum)

Changes

Logical Journal

TxB
length=1 list of

changes
TxE

(checksum)

Logical journals record changes to
bytes, not changes to blocks.

Optimizations
1. Reuse small area for journal
2. Barriers
3. Checksums
4. Circular journal
5. Logical journal

File System Integration
How should FS use journal?

File System Integration
How should FS use journal? Option 1:

FS

Journal

Scheduler

Disk

File System Integration
How should FS use journal? Option 1:

FS

Journal

Scheduler

Disk

API?

Journal API
With RAID we built a fast, reliable logical disk.
!

Can we build an atomic disk with the same API?

Journal API
With RAID we built a fast, reliable logical disk.
!

Can we build an atomic disk with the same API?
!

Standard block calls:
writeBlk()
readBlk()
flush()

Journal API
With RAID we built a fast, reliable logical disk.
!

Can we build an atomic disk with the same API?
!

Standard block calls:
writeBlk()
readBlk()
flush()

which calls must be atomic?

Handle API
h = getHandle();
writeBlk(h, blknum, data);
finishHandle(h);

Handle API
h = getHandle();
writeBlk(h, blknum, data);
finishHandle(h);
!

Blocks in the same handle must be written
atomically.

File System Integration
Observation: some data (e.g., user data) is less important.
!
If we want to only journal FS metadata, we need tighter
integration.

FS

Journal

Scheduler

Disk

File System Integration
Observation: some data (e.g., user data) is less important.
!
If we want to only journal FS metadata, we need tighter
integration.

FS!
Journal

Scheduler

Disk

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.
!

What is the worst type of garbage we could get?

Writeback Journal
Strategy: journal all metadata, including:
superblock, bitmaps, inodes, indirects, directories
!

For regular data, write it back whenever it’s
convenient. Of course, files may contain garbage.
!

What is the worst type of garbage we could get?
How to avoid?

Writeback Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?
0 5

B’ TxB B’ I’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

what if we crash now? Solutions?

Ordered Journaling
Still only journal metadata.
!

But write data before the transaction.
!

May still get scrambled data on update.
!

But appends will always be good.
!

No leaks of sensitive data!

Ordered Journal

?
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ 0
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D
0 5

B’ TxB I’ B’ TxE
6 1211

I’
1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Conclusion
Most modern file systems use journals.
!

FSCK is still useful for weird cases
 - bit flips
 - FS bugs
!

Some file systems don’t use journals, but they still
(usually) must write new data before deleting old.

Log-Structured File System

LFS: Log-Structured File System
Different than FFS:
 - optimizes allocation for writes instead of reads
!

Different than Journaling:
 - use copy-on-write for atomicity

Performance Goal
Ideal: use disk purely sequentially.

Performance Goal
Ideal: use disk purely sequentially.
!

Hard for reads -- why?
!

!

Easy for writes -- why?

Performance Goal
Ideal: use disk purely sequentially.
!

Hard for reads -- why?
 - user might read files X and Y not near each other
!

Easy for writes -- why?
 - can do all writes near each other to empty space

Observations
Memory sizes are growing (so cache more reads).
!

Growing gap between sequential and random I/O
performance.
!

Existing file systems not RAID-aware (don’t avoid
small writes).

LFS Strategy
Just write all data sequentially to new segments.
!

Never overwrite, even if that means we leave
behind old copies.
!

Buffer writes until we have enough data.

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

Big Picture

buffer:

disk:

S1

Big Picture

buffer:

S0disk: S3S2

segments

Data Structures (attempt 1)
What can we get rid of from FFS?

Data Structures (attempt 1)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps

Data Structures (attempt 1)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps
!

Inodes are no longer at fixed offset.
 - use offset instead of table index for name.
 - note: upon inode update, inode number changes.

I2 D I9 D

Overwrite Data in /file.txt

root inode

I2 D I9 D

Overwrite Data in /file.txt

root directory entries

I2 D I9 D

Overwrite Data in /file.txt

file inode

I2 D I9 D

Overwrite Data in /file.txt

file data

I2 D I9 D

Overwrite Data in /file.txt

D’I2 D I9 D

Overwrite Data in /file.txt

D’I2 D I9 D

Overwrite Data in /file.txt

NO! This would be a random write.

I9D’I2 D I9 D

Overwrite Data in /file.txt

DI9D’I2 D I9 D

Overwrite Data in /file.txt

I2DI9D’I2 D I9 D

Overwrite Data in /file.txt

I2DI9D’I2 D I9 D

Overwrite Data in /file.txt

old new

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.
!

Solution: keep inode numbers constant. Don’t
base on offset.

Inode Numbers
Problem: for every data update, we need to do
updates all the way up the tree.
!

Why? We change inode number when we copy it.
!

Solution: keep inode numbers constant. Don’t
base on offset.
!

Before we found inodes with math. How now?

Data Structures (attempt 2)
What can we get rid of from FFS?
 - allocation structs: data + inode bitmaps
!

Inodes are no longer at fixed offset.
 - use imap struct to map number => inode.

imap

S1S0disk: S3S2

segments

imap

imap

S1S0disk: S3S2

segments

table of millions of
entries (4b each)

imap

imap

S1S0disk: S3S2

segments

table of millions of
entries (4b each)

problem: updating imap each time makes I/O random.

Problem
Dilemma:
1. imap too big to keep in memory
2. don’t want to use random writes for imap

Attempt 3
Dilemma:
1. imap too big to keep in memory
2. don’t want to use random writes for imap
!

Solution:
write imap in segments.
keep pointers to pieces of imap in memory.

imap

imap

S1S0disk: S3S2

segments

imap

S1S0disk: S3S2

segments

imap

S1S0disk: S3S2

segments

ptrs to
imap piecesmemory:

Example Write

…disk:

data

Example Write

…disk:

inodedata

Example Write

…disk:

imapinodedata

Example Write

…disk:

Other Issues
Crashes
!

Garbage Collection

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!
!

Better approach: occasionally checkpoint the
pointers to imap pieces on disk.

Crash Recovery
Naive approach: scan entire log to reconstruct
pointers to imap pieces. Slow!
!

Better approach: occasionally checkpoint the
pointers to imap pieces on disk.
!

Checkpoint often: random I/O.
Checkpoint rarely: recovery takes longer.
Example: checkpoint every 30s

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

after last
checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

Checkpoint

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint

tail after last
checkpoint

Crash!

S1S0disk: S3S2

checkpoint

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

get pointers
from checkpoint

tail after last
checkpoint

Reboot

S1S0disk: S3S2

checkpoint

ptrs to
imap piecesmemory:

get pointers
by scanning

after tail.

tail after last
checkpoint

Checkpoint Overview
Checkpoint occasionally (e.g., every 30s).
!

Upon recovery:
 - read checkpoint to get most pointers and tail
 - get rest of pointers by reading past tail

Checkpoint Overview
Checkpoint occasionally (e.g., every 30s).
!

Upon recovery:
 - read checkpoint to get most pointers and tail
 - get rest of pointers by reading past tail
!

What if we crash during checkpoint?

v2v1

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

v2???

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v2v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

???v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v4v3

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

v4???

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

writing

v4v5

Checkpoint Strategy
Have two checkpoints.
Only overwrite one at a time.
Use checksum/timestamps to identify newest.

S1S0disk: S3S2

Other Issues
Crashes
!

Garbage Collection

Versioning File Systems
Motto: garbage is a feature!

Versioning File Systems
Motto: garbage is a feature!
!

Keep old versions in case the user wants to revert
files later.
!

Like Dropbox.

Garbage Collection
Need to reclaim space:
1. when no more references (any file system)
2. after a newer copy is created (COW file system)
!

We want to reclaim segments.
 - tricky, as segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

how much data is good in each?

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

FREEUSED

Garbage Collection

USEDFREEdisk segments: FREEUSED

10% 95% 95%

release input segments

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid?
!

Policy: which segments to compact?

Mechanism
Is an inode the latest version?
Check imap to see if it is pointed to (fast).
!

Is a data block the latest version?
Scan ALL inodes to see if it is pointed to (very slow).

Mechanism
Is an inode the latest version?
Check imap to see if it is pointed to (fast).
!

Is a data block the latest version?
Scan ALL inodes to see if it is pointed to (very slow).
!

Solution: segment summary that lists inode
corresponding to each data block.

Block Liveness

:Ddisk: SS… … …

Block Liveness

:Ddisk: SS… …

am i alive?

…

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

…

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

inode

Block Liveness

:Ddisk: SS… …

am i alive?

imap

… D’

no, die already

inode

Block Liveness

:’(disk: SS… …

am i alive?

imap

… D’

no, die already

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid?
!

Policy: which segments to compact?

Garbage Collection
General operation:
pick M segments, compact into N (where N < M).
!

Mechanism: how do we know whether data in
segments is valid? [segment summary]
!

Policy: which segments to compact?

Policy
Many possible:
!

clean most empty first
clean coldest
more complex heuristics…

Conclusion
Journaling: let’s us put data wherever we like.
Usually in a place optimized for future reads.
!

LFS: puts data where it’s fastest to write.
!

Other COW file systems: WAFL, ZFS, btrfs.

