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Building File Systems and Distributed Data Management Systems  

for Performance and Reliability 

 

龙星计划课程: 文件系统和分布式数据管理系统 

 

Lecture 2: Distributed File Systems 
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Filesystems Overview 

 Permanently stores data 

 Usually layered on top of a lower-level physical storage 

medium 

 Divided into logical units called “files” 

 Addressable by a filename (“foo.txt”) 

 Usually supports hierarchical nesting (directories) 

 A file path = relative (or absolute) directory + file name 

 /dir1/dir2/foo.txt 
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Distributed Filesystems 

 Support access to files on remote servers 

 Must support concurrency 

 Make varying guarantees about locking, who “wins” 

with concurrent writes, etc... 

 Must gracefully handle dropped connections 

 Can offer support for replication and local caching 

 Different implementations sit in different places on 

complexity/feature scale 
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Putting Everything Together: the CAP Theorem 

 

 No distributed system can simultaneously provide all three of the 

following properties: Consistency (all nodes see the same data at 

the same time), Availability (node failures do not prevent 

survivors from continuing to operate), and Partition tolerance (the 

system continues to operate despite arbitrary message loss). 



5 

Google’s GFS: Motivation 

 Google needed a good distributed file system 

 Redundant storage of massive amounts of data on cheap 

and unreliable computers 

 Why not use an existing file system? 

 Google’s problems are different from anyone else’s 

 Different workload and design priorities 

 GFS is designed for Google apps and workloads 

 Google apps are designed for GFS 
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Assumptions 

 High component failure rates 

 Inexpensive commodity components fail all the time 

 “Modest” number of HUGE files 

 Just a few million 

 Each is 100MB or larger; multi-GB files typical 

 Files are write-once, mostly appended to 

 Perhaps concurrently 

 Large streaming reads 

 High sustained throughput favored over low latency 
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GFS Design Decisions 

 Files stored as chunks 

 Fixed size (64MB) 

 Reliability through replication 

 Each chunk replicated across 3+ chunkservers 

 Single master to coordinate access, keep metadata 

 Simple centralized management 

 No data caching 

 Little benefit due to large data sets, streaming reads 

 Familiar interface, but customize the API 

 Simplify the problem; focus on Google apps 

 Add snapshot and record append operations 
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GFS Architecture 

…Can anyone see a potential weakness in this design? 

Each chunk is identified by an immutable and globally unique 64 bit 

chunk handle assigned by the master at the time of chunk creation. 



9 

Single master 

 Problem: 

 Single point of failure 

 Scalability bottleneck 

 GFS solutions: 

 Shadow masters 

 Minimize master involvement 
 never move data through it, use only for metadata and cache 

metadata at clients 
 large chunk size 
 master delegates authority to primary replicas in data mutations 

(chunk leases) 

 Simple, and good enough for Google’s concerns 
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Metadata 

 Global metadata is stored on the master 

 File and chunk namespaces 

 Mapping from files to chunks 

 Locations of each chunk’s replicas 

 All in memory (64 bytes / chunk) 

 Fast 

 Easily accessible 

 Master has an operation log for persistent logging of critical metadata 
updates 

 Persistent on local disk 

 Replicated 

 Checkpoints for faster recovery 



11 

Master’s Responsibilities 
 Metadata storage 

 Namespace management/locking 

 Periodic communication with chunkservers 

 give instructions, collect state, track cluster health 

 Chunk creation, re-replication, rebalancing 

 balance space utilization and access speed 

 spread replicas across racks to reduce correlated failures 

 re-replicate data if redundancy falls below threshold 

 rebalance data to smooth out storage and request load 

 Garbage Collection 

 simpler, more reliable than traditional file delete 

 master logs the deletion, renames the file to a hidden name 

 lazily garbage collects hidden files 

 Stale replica deletion 

 detect “stale” replicas using chunk version numbers 
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Mutations 

 Mutation = write or record append 

 Must be done for all replicas 

 Goal: minimize master involvement 

 Lease mechanism: 

 Master picks one replica as primary of a chunk; gives it a 
“lease” for mutations 

 Data flow decoupled from control flow 
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Read Algorithm 

1. Application originates the read request 

2. GFS client translates request and sends it to master 

3. Master responds with chunk handle and replica locations 
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Read Algorithm 

4. Client picks a location and sends the request 

5. Chunkserver sends requested data to the client 

6. Client forwards the data to the application 
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Write Algorithm 

1. Application originates the request 

2. GFS client translates request and sends it to the master 

3. Master responds with chunk handle and replica locations, 
which are cached by the client. 
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Write Algorithm 

4. Client pushes write data to all locations. Data is stored in 
chunkserver’s internal buffers 
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Write Algorithm 

5. Client sends write command to primary 

6. Primary determines serial order for data instances in its buffer 
and writes the instances in that order to the chunk 

7. Primary sends the serial order to the secondaries and tells them 
to perform the write 
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Write Algorithm 

8. Secondaries respond back to primary 

9. Primary responds back to the client 
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Atomic Record Append 

 GFS appends it to the file atomically at least once 

GFS picks the offset 

Works for concurrent writers 

 Used heavily by Google apps 

 e.g., for files that serve as multiple-producer/single-

consumer queues 

Merge results from multiple machines into one file 
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Garbage Collection 
 Use garbage collection instead of immediate reclamation 

when a file is deleted: 

The master only records chunks (files) that have been 

removed. 

Attached with HeartBeat messages, chunkservers know 

which of their chunks that are orphaned and can be 

removed.  

 Why garbage collection and not eager deletion? 

 Simple and reliable as the master doesn’t send and 

manage deletion messages.  

Batched operation for lower amortized cost and better 

timing. 

The delay provides a safety net against accidental, 

irreversible deletion.  
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Fault Tolerance 

 High availability 

 Fast recovery 

master and chunkservers restartable in a few seconds 

Chunk replication 

 default: 3 replicas. 

 Shadow masters 

 Data integrity 

Checksum every 64KB block in each chunk 
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Conclusion 

 GFS demonstrates how to support large-scale 

processing workloads on commodity hardware 

 design to tolerate frequent component failures 

 optimize for huge files that are mostly appended and 

read 

 feel free to relax and extend FS interface as required 

 go for simple solutions (e.g., single master) 

 GFS has met Google’s storage needs, therefore 

good enough for them. 
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Facebook’s Photo Storage: Motivation 

 Facebook stores over 260 billion images 

 20 PB of data 

 Users upload one billion new images each week 

 60 TB of data 

 Facebook serves over one million images per second at 

peak 

 Two types of workloads for image serving 

 Profile pictures – heavy access, smaller size 

 Photo albums – intermittent access, higher at beginning, 

decreasing over time (long tail) 

 Data is written once, read often, never modified, and 

rarely deleted 



25 

Long Tail Issue 

What can you read from the plot? 
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Problem Description 

Four main goals for photo serving method: 

• High throughput and low latency 

– Current file systems need multiple disk accesses for a read 

– Only one data access for a read, metadata are reduced to fit in 

memory 

• Fault-tolerant 

          Haystack replicates each photo in geographically distinct locations 

• Cost-effective 

– Save money over traditional approaches (reduce reliance on 

CDNs!) 

• Simplicity 

– Make it easy to implement and maintain 
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Typical Design 
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Facebook’s Old Design 
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Old Design 

The old photo infrastructure consisted of several 

tiers: 

• Upload tier receives users’ photo uploads, scales the 

original images and saves them on the NFS storage tier. 

• Photo serving tier receives HTTP requests for photo 

images and serves them from the NFS storage tier. 

• NFS storage tier built on top of commercial storage 

appliances. 
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Features of Old Design 

 Since each image is stored in its own file, there is an 

enormous amount of metadata generated on the storage 

tier due to the namespace directories and file inodes.  

 The amount of metadata far exceeds the caching abilities 

of the NFS storage tier, resulting in multiple I/O 

operations per photo upload or read request  

 After optimization, there are three disk accesses: one to 

read the directory metadata into memory, a second to 

load the inode into memory, and a third to read the file 

contents) 

 High degree of reliance on CDNs = expensive 
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Design of Haystack 
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Step-through of Operation 

User visits page 

• Web server receives the request 

• Uses Haystack Directory to construct URL for each photo 

– http://<CDN>/<Cache>/<Machine id>/<Logical 

volume, Photo> 

– From which CDN to request the photo 

• This portion may be omitted if the photo is available 

directly from the Cache 

• If CDN is unsuccessful, contacts the Cache 
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Haystack 
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Haystack Directory 

Four main functions… 

• Provides a mapping from logical volumes to physical 

volumes 

• Load balances writes across logical volumes 

• Determines whether a photo request should be handled 

by the CDN or by the Haystack Cache 

• Identifies logical volumes that are read-only 

– Operational reasons 

– Reached storage capacity 
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Haystack 
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Haystack Cache 

Distributed hash table, uses photo’s id to locate 

cached data 

Receives HTTP requests from CDNs and browsers 

• If photo is in Cache, return the photo 

• If photo is not in Cache, fetches photo from the 

Haystack Store and returns the photo 

Add a photo to Cache if two conditions are met… 

• The request comes directly from a browser, not the 

CDN 

• The photo is fetched from a write-enabled store machine 
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Cache Hit Rate 
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Haystack 
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Layout of Haystack Store File 
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A Closer Look at the Needles… 

 A needle is uniquely identified by its <Offset, Key, 

Alternate Key, Cookie> tuple, where the offset is 

the needle offset in the haystack store. 
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Haystack Index File 
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Haystack Index File 

The index file provides the minimal metadata 

required to locate a particular needle in the store 

• Main purpose: allow quick loading of the needle 

metadata into memory without traversing the larger 

Haystack store file upon restarting 

• Index is usually less than 1% the size of the store file 
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Haystack Store 

 Each Store machine manages multiple physical 

volumes 

 Can access a photo quickly using only the id of 

the corresponding logical volume and the file 

offset of the photo 

 Handles three types of requests… 

• Read 

• Write 

• Delete 
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Haystack Store Read 

 Cache machine supplies the logical volume id, key, 

alternate key, and cookie to the Store machine 

  -- Purpose of the cookie? 

 Store machine looks up the relevant metadata in its in-

memory mappings 

 Seeks to the appropriate offset in the volume file, reads 

the entire needle 

 Verifies cookie and integrity of the data 

 Returns data to the Cache machine 
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Haystack Store Write 

 Web server provides logical volume id, key, alternate 

key, cookie, and data to Store machines 

 Store machines synchronously append needle images to 

physical volume files  

 Update in-memory mappings as needed 

 



46 

Haystack Store Delete 

 Store machine sets the delete flag in both the in-memory mapping 
and in the volume file 

 Space occupied by deleted needles is lost! 

• How to reclaim?  
– Compaction! 
– Important because 25% of photos get deleted in a given year. 
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Haystack Advantages 

Reduced disk I/O 

• 10 TB/node -> 10 GB of metadata 
– This amount is easily cacheable! 

Simplified metadata 

• No directory structures/file names  
– 64-bit ID 

• Results in easier lookups 

Single photo serving and storage layer 

• Direct I/O path between client and storage 

• Results in higher bandwidth 
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Microsoft’s Flat Storage System 

Flat Datacenter Storage (FDS) is a high-performance,  

fault-tolerant, large-scale, locality-oblivious blob store. 

E. B. Nightingale et al. “Flat Datacenter Storage”, OSDI’12.  
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- bunch of processors 

- bunch of disks 

- controller 

Context: why do we need a locality-oblivious FDS? 
Here is what we need for a single machine or computer 
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Reading 
 

We get full performance out of the disks  

because all the disks stay busy even if some  

processes consume data slowly and other quickly 

 

Programmers can pretend there’s just one disk 

 

If the need is to attack a large problem  

in parallel the input doesn’t need  

to be partitioned in advance.) 

 

Another benefit is that is easy to adjust  

the ratio of processors and disks 
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How much can this architecture scale? 

 

- Metadata management 

- Physically eouting data 



53 

In FDS, data is stored in blobs 

 

A blob is named with a GUID 

 

Reads from and writes  

to a blob are done in units  

called tracts.  

 

Each tract within a blob  

is numbered sequentially  

starting from 0. 

Blobs and tracts 
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The metadata server  

coordinates the cluster and  

helps clients meet  

with tractservers.  
 

 

How does the client know which tractserver  

should be used to read or write a tract?” 

Design 



55 



56 

FDS uses SHA-1 for this hash. 

 The table only contains 

disks, not tracts.  

 Clients can retrieve it 

from the metadata server 

once, then never contact 

the metadata server again.  

 The only time the table 

changes is when a disk 

fails or is added.  
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Failure Recovery 

This simple method of replication is very slow. 

 

In FDS, when a disk dies, the goal isn’t to  

reconstruct an exact duplicate of the disk that died.  

 

FDS wants to make sure that somewhere in the  

system, extra copies of the lost data get made.  

It doesn’t matter where.  

  
When a disk dies all the other disks contain some backup 

copies of that disk’s data. Every disk sends (in parallel) a copy 

of its small part of the lost data to some other disk that has 

some free space. 

Recovery’s speed grows linearly whith N  
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FDS Recovery Solution 
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Constructing the Table for Quick Recovery  
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Ceph: A Scalable, High-Performance 

Distributed File System 

Scalability 

• Storage capacity, throughput, client performance.  Emphasis 

on HPC. 

Reliability 

• “…failures are the norm rather than the exception…” 

Performance 

• Dynamic workloads 

 

 S. A. Weil et al., “Ceph: A Scalable, High-Performance 

Distributed File System”, in OSDI’06 
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63 
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System Overview 
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Key Features 

Decoupled data and metadata 

• CRUSH 

– Files striped onto predictably named objects 

– CRUSH maps objects to storage devices 

Dynamic Distributed Metadata Management 

• Dynamic subtree partitioning 

– Distributes metadata amongst MDSs 

Object-based storage 

• OSDs handle migration, replication, failure detection and 

recovery 
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Client Operation 

Ceph interface 

• Nearly POSIX 

• Decoupled data and metadata operation 

User space implementation 

• FUSE or directly linked 
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Client Access Example 

1. Client sends open request to MDS 

2. MDS returns capability, file inode, file size and 

stripe information (map file data into objects) 

3. Client read/write directly from/to OSDs 

4. MDS manages the capability 

5.   Client sends close request, relinquishes 

capability, provides MDS with the new file 

size 
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Distributed Object Storage 

Files are split across objects 

Objects are members of placement groups 

Placement groups are distributed across OSDs. 
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Distributed Object Storage 

CRUSH takes the placement group and 

an OSD cluster map: a compact, 

hierarchical description of the devices 

comprising the storage cluster. 
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CRUSH 

CRUSH(x)  (osdn1, osdn2, osdn3) 

• Inputs 

– x is the placement group 

– Hierarchical cluster map 

– Placement rules 

• Outputs a list of OSDs 

Advantages 

• Anyone can calculate object location 

• Cluster map infrequently updated 
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Replication 

Objects are replicated on OSDs in terms of placement 

groups, each of which is mapped to an ordered list of n 

OSDs (for n-way replication). 

    Client is oblivious to replication 
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Acronyms 

CRUSH:  Controlled Replication Under Scalable Hashing 

EBOFS:  Extent and B-tree based Object File System 

HPC:  High Performance Computing 

MDS:  MetaData server 

OSD:  Object Storage Device 

PG:  Placement Group 

POSIX:  Portable Operating System Interface for uniX 

RADOS:  Reliable Autonomic Distributed Object Store 
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Summary of Ceph 

 Scalability, Reliability, Performance 

 Separation of data and metadata 

-- CRUSH data distribution function 

 Object based storage 


