
1

Building File Systems and Distributed Data Management Systems

for Performance and Reliability

龙星计划课程: 文件系统和分布式数据管理系统

Lecture 2: Distributed File Systems

2

Filesystems Overview

 Permanently stores data

 Usually layered on top of a lower-level physical storage

medium

 Divided into logical units called “files”

 Addressable by a filename (“foo.txt”)

 Usually supports hierarchical nesting (directories)

 A file path = relative (or absolute) directory + file name

 /dir1/dir2/foo.txt

3

Distributed Filesystems

 Support access to files on remote servers

 Must support concurrency

 Make varying guarantees about locking, who “wins”

with concurrent writes, etc...

 Must gracefully handle dropped connections

 Can offer support for replication and local caching

 Different implementations sit in different places on

complexity/feature scale

4

Putting Everything Together: the CAP Theorem

 No distributed system can simultaneously provide all three of the

following properties: Consistency (all nodes see the same data at

the same time), Availability (node failures do not prevent

survivors from continuing to operate), and Partition tolerance (the

system continues to operate despite arbitrary message loss).

5

Google’s GFS: Motivation

 Google needed a good distributed file system

 Redundant storage of massive amounts of data on cheap

and unreliable computers

 Why not use an existing file system?

 Google’s problems are different from anyone else’s

 Different workload and design priorities

 GFS is designed for Google apps and workloads

 Google apps are designed for GFS

6

Assumptions

 High component failure rates

 Inexpensive commodity components fail all the time

 “Modest” number of HUGE files

 Just a few million

 Each is 100MB or larger; multi-GB files typical

 Files are write-once, mostly appended to

 Perhaps concurrently

 Large streaming reads

 High sustained throughput favored over low latency

7

GFS Design Decisions

 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management

 No data caching

 Little benefit due to large data sets, streaming reads

 Familiar interface, but customize the API

 Simplify the problem; focus on Google apps

 Add snapshot and record append operations

8

GFS Architecture

…Can anyone see a potential weakness in this design?

Each chunk is identified by an immutable and globally unique 64 bit

chunk handle assigned by the master at the time of chunk creation.

9

Single master

 Problem:

 Single point of failure

 Scalability bottleneck

 GFS solutions:

 Shadow masters

 Minimize master involvement
 never move data through it, use only for metadata and cache

metadata at clients
 large chunk size
 master delegates authority to primary replicas in data mutations

(chunk leases)

 Simple, and good enough for Google’s concerns

10

Metadata

 Global metadata is stored on the master

 File and chunk namespaces

 Mapping from files to chunks

 Locations of each chunk’s replicas

 All in memory (64 bytes / chunk)

 Fast

 Easily accessible

 Master has an operation log for persistent logging of critical metadata
updates

 Persistent on local disk

 Replicated

 Checkpoints for faster recovery

11

Master’s Responsibilities
 Metadata storage

 Namespace management/locking

 Periodic communication with chunkservers

 give instructions, collect state, track cluster health

 Chunk creation, re-replication, rebalancing

 balance space utilization and access speed

 spread replicas across racks to reduce correlated failures

 re-replicate data if redundancy falls below threshold

 rebalance data to smooth out storage and request load

 Garbage Collection

 simpler, more reliable than traditional file delete

 master logs the deletion, renames the file to a hidden name

 lazily garbage collects hidden files

 Stale replica deletion

 detect “stale” replicas using chunk version numbers

12

Mutations

 Mutation = write or record append

 Must be done for all replicas

 Goal: minimize master involvement

 Lease mechanism:

 Master picks one replica as primary of a chunk; gives it a
“lease” for mutations

 Data flow decoupled from control flow

13

Read Algorithm

1. Application originates the read request

2. GFS client translates request and sends it to master

3. Master responds with chunk handle and replica locations

14

Read Algorithm

4. Client picks a location and sends the request

5. Chunkserver sends requested data to the client

6. Client forwards the data to the application

15

Write Algorithm

1. Application originates the request

2. GFS client translates request and sends it to the master

3. Master responds with chunk handle and replica locations,
which are cached by the client.

16

Write Algorithm

4. Client pushes write data to all locations. Data is stored in
chunkserver’s internal buffers

17

Write Algorithm

5. Client sends write command to primary

6. Primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk

7. Primary sends the serial order to the secondaries and tells them
to perform the write

18

Write Algorithm

8. Secondaries respond back to primary

9. Primary responds back to the client

19

Atomic Record Append

 GFS appends it to the file atomically at least once

GFS picks the offset

Works for concurrent writers

 Used heavily by Google apps

 e.g., for files that serve as multiple-producer/single-

consumer queues

Merge results from multiple machines into one file

21

Garbage Collection
 Use garbage collection instead of immediate reclamation

when a file is deleted:

The master only records chunks (files) that have been

removed.

Attached with HeartBeat messages, chunkservers know

which of their chunks that are orphaned and can be

removed.

 Why garbage collection and not eager deletion?

 Simple and reliable as the master doesn’t send and

manage deletion messages.

Batched operation for lower amortized cost and better

timing.

The delay provides a safety net against accidental,

irreversible deletion.

22

Fault Tolerance

 High availability

 Fast recovery

master and chunkservers restartable in a few seconds

Chunk replication

 default: 3 replicas.

 Shadow masters

 Data integrity

Checksum every 64KB block in each chunk

23

Conclusion

 GFS demonstrates how to support large-scale

processing workloads on commodity hardware

 design to tolerate frequent component failures

 optimize for huge files that are mostly appended and

read

 feel free to relax and extend FS interface as required

 go for simple solutions (e.g., single master)

 GFS has met Google’s storage needs, therefore

good enough for them.

24

Facebook’s Photo Storage: Motivation

 Facebook stores over 260 billion images

 20 PB of data

 Users upload one billion new images each week

 60 TB of data

 Facebook serves over one million images per second at

peak

 Two types of workloads for image serving

 Profile pictures – heavy access, smaller size

 Photo albums – intermittent access, higher at beginning,

decreasing over time (long tail)

 Data is written once, read often, never modified, and

rarely deleted

25

Long Tail Issue

What can you read from the plot?

26

Problem Description

Four main goals for photo serving method:

• High throughput and low latency

– Current file systems need multiple disk accesses for a read

– Only one data access for a read, metadata are reduced to fit in

memory

• Fault-tolerant

 Haystack replicates each photo in geographically distinct locations

• Cost-effective

– Save money over traditional approaches (reduce reliance on

CDNs!)

• Simplicity

– Make it easy to implement and maintain

27

Typical Design

28

Facebook’s Old Design

29

Old Design

The old photo infrastructure consisted of several

tiers:

• Upload tier receives users’ photo uploads, scales the

original images and saves them on the NFS storage tier.

• Photo serving tier receives HTTP requests for photo

images and serves them from the NFS storage tier.

• NFS storage tier built on top of commercial storage

appliances.

30

Features of Old Design

 Since each image is stored in its own file, there is an

enormous amount of metadata generated on the storage

tier due to the namespace directories and file inodes.

 The amount of metadata far exceeds the caching abilities

of the NFS storage tier, resulting in multiple I/O

operations per photo upload or read request

 After optimization, there are three disk accesses: one to

read the directory metadata into memory, a second to

load the inode into memory, and a third to read the file

contents)

 High degree of reliance on CDNs = expensive

31

Design of Haystack

32

Step-through of Operation

User visits page

• Web server receives the request

• Uses Haystack Directory to construct URL for each photo

– http://<CDN>/<Cache>/<Machine id>/<Logical

volume, Photo>

– From which CDN to request the photo

• This portion may be omitted if the photo is available

directly from the Cache

• If CDN is unsuccessful, contacts the Cache

33

Haystack

34

Haystack Directory

Four main functions…

• Provides a mapping from logical volumes to physical

volumes

• Load balances writes across logical volumes

• Determines whether a photo request should be handled

by the CDN or by the Haystack Cache

• Identifies logical volumes that are read-only

– Operational reasons

– Reached storage capacity

35

Haystack

36

Haystack Cache

Distributed hash table, uses photo’s id to locate

cached data

Receives HTTP requests from CDNs and browsers

• If photo is in Cache, return the photo

• If photo is not in Cache, fetches photo from the

Haystack Store and returns the photo

Add a photo to Cache if two conditions are met…

• The request comes directly from a browser, not the

CDN

• The photo is fetched from a write-enabled store machine

37

Cache Hit Rate

38

Haystack

39

Layout of Haystack Store File

40

A Closer Look at the Needles…

 A needle is uniquely identified by its <Offset, Key,

Alternate Key, Cookie> tuple, where the offset is

the needle offset in the haystack store.

41

Haystack Index File

42

Haystack Index File

The index file provides the minimal metadata

required to locate a particular needle in the store

• Main purpose: allow quick loading of the needle

metadata into memory without traversing the larger

Haystack store file upon restarting

• Index is usually less than 1% the size of the store file

43

Haystack Store

 Each Store machine manages multiple physical

volumes

 Can access a photo quickly using only the id of

the corresponding logical volume and the file

offset of the photo

 Handles three types of requests…

• Read

• Write

• Delete

44

Haystack Store Read

 Cache machine supplies the logical volume id, key,

alternate key, and cookie to the Store machine

 -- Purpose of the cookie?

 Store machine looks up the relevant metadata in its in-

memory mappings

 Seeks to the appropriate offset in the volume file, reads

the entire needle

 Verifies cookie and integrity of the data

 Returns data to the Cache machine

45

Haystack Store Write

 Web server provides logical volume id, key, alternate

key, cookie, and data to Store machines

 Store machines synchronously append needle images to

physical volume files

 Update in-memory mappings as needed

46

Haystack Store Delete

 Store machine sets the delete flag in both the in-memory mapping
and in the volume file

 Space occupied by deleted needles is lost!

• How to reclaim?
– Compaction!
– Important because 25% of photos get deleted in a given year.

47

Haystack Advantages

Reduced disk I/O

• 10 TB/node -> 10 GB of metadata
– This amount is easily cacheable!

Simplified metadata

• No directory structures/file names
– 64-bit ID

• Results in easier lookups

Single photo serving and storage layer

• Direct I/O path between client and storage

• Results in higher bandwidth

48

Microsoft’s Flat Storage System

Flat Datacenter Storage (FDS) is a high-performance,

fault-tolerant, large-scale, locality-oblivious blob store.

E. B. Nightingale et al. “Flat Datacenter Storage”, OSDI’12.

49

- bunch of processors

- bunch of disks

- controller

Context: why do we need a locality-oblivious FDS?
Here is what we need for a single machine or computer

50

51

Reading

We get full performance out of the disks

because all the disks stay busy even if some

processes consume data slowly and other quickly

Programmers can pretend there’s just one disk

If the need is to attack a large problem

in parallel the input doesn’t need

to be partitioned in advance.)

Another benefit is that is easy to adjust

the ratio of processors and disks

52

How much can this architecture scale?

- Metadata management

- Physically eouting data

53

In FDS, data is stored in blobs

A blob is named with a GUID

Reads from and writes

to a blob are done in units

called tracts.

Each tract within a blob

is numbered sequentially

starting from 0.

Blobs and tracts

54

The metadata server

coordinates the cluster and

helps clients meet

with tractservers.

How does the client know which tractserver

should be used to read or write a tract?”

Design

55

56

FDS uses SHA-1 for this hash.

 The table only contains

disks, not tracts.

 Clients can retrieve it

from the metadata server

once, then never contact

the metadata server again.

 The only time the table

changes is when a disk

fails or is added.

57

Failure Recovery

This simple method of replication is very slow.

In FDS, when a disk dies, the goal isn’t to

reconstruct an exact duplicate of the disk that died.

FDS wants to make sure that somewhere in the

system, extra copies of the lost data get made.

It doesn’t matter where.

When a disk dies all the other disks contain some backup

copies of that disk’s data. Every disk sends (in parallel) a copy

of its small part of the lost data to some other disk that has

some free space.

Recovery’s speed grows linearly whith N

58

FDS Recovery Solution

59

Constructing the Table for Quick Recovery

60

61

Ceph: A Scalable, High-Performance

Distributed File System

Scalability

• Storage capacity, throughput, client performance. Emphasis

on HPC.

Reliability

• “…failures are the norm rather than the exception…”

Performance

• Dynamic workloads

 S. A. Weil et al., “Ceph: A Scalable, High-Performance

Distributed File System”, in OSDI’06

62

63

63

64

System Overview

65

Key Features

Decoupled data and metadata

• CRUSH

– Files striped onto predictably named objects

– CRUSH maps objects to storage devices

Dynamic Distributed Metadata Management

• Dynamic subtree partitioning

– Distributes metadata amongst MDSs

Object-based storage

• OSDs handle migration, replication, failure detection and

recovery

66

Client Operation

Ceph interface

• Nearly POSIX

• Decoupled data and metadata operation

User space implementation

• FUSE or directly linked

67

Client Access Example

1. Client sends open request to MDS

2. MDS returns capability, file inode, file size and

stripe information (map file data into objects)

3. Client read/write directly from/to OSDs

4. MDS manages the capability

5. Client sends close request, relinquishes

capability, provides MDS with the new file

size

68

Distributed Object Storage

Files are split across objects

Objects are members of placement groups

Placement groups are distributed across OSDs.

69

Distributed Object Storage

CRUSH takes the placement group and

an OSD cluster map: a compact,

hierarchical description of the devices

comprising the storage cluster.

70

CRUSH

CRUSH(x)  (osdn1, osdn2, osdn3)

• Inputs

– x is the placement group

– Hierarchical cluster map

– Placement rules

• Outputs a list of OSDs

Advantages

• Anyone can calculate object location

• Cluster map infrequently updated

71

Replication

Objects are replicated on OSDs in terms of placement

groups, each of which is mapped to an ordered list of n

OSDs (for n-way replication).

 Client is oblivious to replication

72

Acronyms

CRUSH: Controlled Replication Under Scalable Hashing

EBOFS: Extent and B-tree based Object File System

HPC: High Performance Computing

MDS: MetaData server

OSD: Object Storage Device

PG: Placement Group

POSIX: Portable Operating System Interface for uniX

RADOS: Reliable Autonomic Distributed Object Store

73

Summary of Ceph

 Scalability, Reliability, Performance

 Separation of data and metadata

-- CRUSH data distribution function

 Object based storage

