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Building File Systems and Distributed Data Management Systems  

for Performance and Reliability 

 

龙星计划课程: 文件系统和分布式数据管理系统 

 

Lecture 3: Key-Value Data Management Systems 
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Key-Value Store 

Clients 

PUT(key, value) 

value = GET(key) 

DELETE(key) 

Key-Value Store 

Cluster 

• Dynamo at Amazon 

• BigTable (LevelDB) at Google  

• Redis at GitHub, Digg, and Blizzard Interactive 

• Memcached at Facebook, Zynga and Twitter  

• Voldemort at Linkedin 
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NoSQL DB and KV Store  

 A NoSQL or Not Only SQL database stores and organizes 
data differently from the tabular relations used in relational 
databases.  

 Why NoSQL? 

 Simplicity of design, horizontal scaling, and finer control 
over availability. 

 It can be classified as column, document, key-value, and 
graph store based on their data models. 

 

 The key-value model is one of the simplest non-trivial data 
models, and richer data models are often implemented on 
top of it.  

 Applications store their data in a schema-less way.  

  Array, linked list, binary search trees, B+ tree, or hash 
table …? 
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The First Example: Memcached  



5 

Memcached 

5 

 memcached is a high-performance, distributed in-

memory object caching system, generic in nature 

 It is a key-based cache daemon that stores data and 

objects wherever dedicated or spare RAM is available 

for very quick access  

 It is a distributed hash table.  It doesn’t provide 

redundancy, failover or authentication.  If needed the 

client has to handle that.  
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Memcached 

6 

 To reduce the load on the database by caching 

data BEFORE it hits the database 

 Can be used for more than just holding database 

results (objects) and improve the entire 

application’s response time 

 Feel the need for speed 

 Memcache is in RAM - much faster then hitting the 

disk or the database 
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Memcached 

REQUEST CHECK CACHE 
CACHE_

GET() 
QUERY CACHE 

RETURN 

CACHED 

DATA 

7 
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Memcached 

Distributed memory caching system as a cluser 

8 

Hash Function 

Memcached Servers 

Key 
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Memcached Workload Pattern at Facebook 

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, Mike 

Paleczny. Workload Analysis of a Large-Scale Key-Value Store . 

In Proceedings of the SIGMETRICS'12,  
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Memcached Workload Pattern at Facebook 
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Memcached Workload Pattern at Facebook 

Why are update requests represent more expensive in memcached?  
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The Data Structure 

 Slab-based memory allocation: memory is divided into 1 MB slabs 

consisting of fixed-length chunks. E.g, slab class 1 is 72 bytes and each 

slab of this class has 14563 chunks; slab class 43 is 1 MB and each slab 

has only one chunk. Least-Recently-Used (LRU) algorithm to select the 

items for replacement in each slab-class queue. (why slab?) 

 Lock has to be used for integrity of the structure, which is very 

expensive (why?) 
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A Use Scenario of KV store:  

Data-intensive Networked Systems 

Data center Branch office 

WAN 

WAN optimizers 
Object 

Object store (~4 TB) 
Hashtable (~32GB)  

Look up 

Object 

Chunks(4 KB) 

Key 

(20 B) 

Chunk 

pointer Large hash tables (32 GB) 

High speed (~10 K/sec) 

inserts and evictions 

High speed (~10K/sec) 

lookups for 500 Mbps link 
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Candidate options 

DRAM 300K $120K+   

Disk 250 $30+   

Random 

reads/sec 

Cost 

(128 GB) 

Flash-SSD 

 
10K* 

 

$225+   

Random 

writes/sec 

250 

300K 

 
5K* 

 

Too 

slow 

Too 

expensive 

* Derived from latencies  on Intel M-18 SSD in 

experiments 

2.5 ops/sec/$ 

Slow  

writes 

How to deal with slow writes of Flash SSD? 

 +Price statistics from 2008-09 
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Flash/SSD primer 

Random writes are expensive 

    Avoid random page writes 

 

Reads and writes happen at the granularity of a flash page 

    I/O smaller than page should be avoided, if possible 
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Flash Solid State Drive (SSD) 

Controller 

(FTL) 
RAM 

Flash Memory 

File System 

Read pages Write pages 

Block Interface 
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Basics of NAND Flash Memory 

Three operations: read, write, erase 

Reads and writes are done at the granularity of a page (2KB or 4KB) 

Erases are done at the granularity of a block 

• Block: A collection of physically contiguous pages (64 or 128) 

• Block erase is the slowest operation requiring about 2ms 

Writes can only be done on erased pages 

 

Page 

Block 

Page 

Page 

Page 

Data OOB 

Block 

…… 

Page 

Page 

Page 

Data OOB 

Block 

…… …… 

NAND Flash 

Page 

Page 

Data OOB 

…… 
Page 

Page 

Data OOB 

…… 

Page Page Page 
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Over-writes on the same location (page) are expensive 

Updates are written to a free page 

OOB area 

• Keeps valid/free/invalid status 

• Stores LPN, used to reconstruct mapping table upon power 
failure 

 

(0, 0) 

Out-of-Place Updates 

Block 0 

Flash Mapping Table  

A 

LPN PPN (PBN, Offset) 

B (0, 1) 

C (0, 2) 

(0, 3) A Update 

     Free 

LPN=A, V 

LPN=B, V 

LPN=C, V 

Data OOB 

   Invalid 

LPN=A, V 
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Flash Translation Layer (FTL) 

Flash Translation Layer 
• Emulates a normal block device interface 

• Hides the presence of erase operation/erase-before-write 

• Address translation, garbage collection, and wear-leveling 

 

Address Translation  
• Mapping table present in small RAM within the flash 
device 
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SDF: A Customized SSD for Baidu 

Jian Ouyang, Shiding Lin,1 Song Jiang, Zhenyu Hou, Yong Wang, 

and Yuanzheng Wang, SDF: Software-Defined Flash 

for Web-Scale Internet Storage, Systems, in ASPLOS’14  

 

SSD deployment at a large scale since 2007 

•Purchase tens of thousands of SSDs each year. 

•Initially adopted SSDs in index servers in 2007 

•SSDs are commonly deployed in various servers.   

•SSDs support various services, such as indexing, CDN, SQL, and 
No-SQL(table, KV, object).  

 

However, Baidu is increasingly challenged by the SSDs’ inadequacies.  
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Background – SSD Limitations (1/3) 

Low bandwidth utilization 

• 70~80% for read and 40~50% for write    

• 40% or less in real workload 

Reasons  

• Current architecture limits exploitation of hardware parallelism 
– Centralized SSD controller becomes the bottleneck. 

 

 

 

 

 
• Access interface is not optimized for the flash 

– Write granularity (4KB vs. erase block size) 
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Background – SSD Limitations (2/3) 

Limited capacity utilization 
• Only 50%~70% for applications  

Reasons  

• 7%~50% raw capacity for over-provisioning (OP)  
– To accommodate out-of-place updates 

• ~10% raw capacity for parity coding across flash 
channels 

– To recover from channel crash  
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Background – SSD Limitations (3/3) 

Less predictable performance 
• Quality variation of online services 

Reasons  
• Garbage collection  

– Blocking the normal operations  

• Linux IO stack 
– Difficult to configure 
– Difficult to debug 
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Background – challenges 

Large-scale 

• 10,000+ SSD deployment per year (10PB+ capacity) 

 

Challenges  

• Acquisition of extra devices 

• Higher cost   

– Installation, cooling, and operational energy cost 

– Testing and debugging  
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Design Goals  

An ideal SSD  

• Delivers all raw hardware bandwidth to applications  

• Makes all raw hardware capacity available to 

applications 

• Provides predictable performance  

Approaches  

• Explore parallelism  

– Highly concurrent access 

– Keep all hardware channels busy 

• Explore raw capacity 

– Remove spaces for over-provisioning and parity coding 

• Eliminate redundant layers  

– Remove Linux IO stack  and file system 
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Rethinking SSD in Data Center   
Design principles  

• HW/SW co-design 

• Simplified hardware and system  

The solution: Software-Defined Flash (SDF) 

• Software defined 

– Expose low level hardware interface to software 

– Software can control hardware completely 

• New hardware architecture  

– Expose hardware channels to software 

– Individual FTL controller for each channel 

• New HW/SW interface 

– Write in the unit of erase block size 

• Leverage global resource for data safety 
– Removes across-channel parity coding 
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Designs  

Software/hardware interface 

Software stack 

Hardware implementations  
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Design - SW/HW Interface 

Expose flash channels to applications  
• Data placement determined by software  

• Explores hardware parallelism to software  

• Enforce synchronous IO 

API 

• Read: 8KB 

• Write: 2MB aligned  

• Erase: 2MB aligned 

Erase conducted by software 

• Erases before writes 

• Scheduled by applications 

 

 

 

 

 

 
 

............Flash 
ch_0

Flash 
CH_0

Flash 
ch_0

Flash 
CH_1

Flash 
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Flash 
CH_N

SSD Controller

/dev/sda

Flash 
ch_0

Flash 
CH_0

Flash 
ch_0

Flash 
CH_1

Flash 
ch_0

Flash 
CH_N

SSD Ctrl

/dev/sda0 ～/dev/sdaN

Conventional SSDConventional SSD SDFSDF

SSD Ctrl SSD Ctrl
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Design  - Software Stack 

Removing unnecessary software layers 
• To reduce latency and CPU cycles 

• To remove complexity of kernel configurations  

User-defined scheduler  

• Data layout 

• Erase scheduling 

 

 

 

 
 

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

VFS

Generic Block LayerGeneric Block Layer

IO Scheduler

P
C

IE

SCSI Mid-layer

SATA and SAS Translation

Block DeviceFile System

Low Level Device Driver

    Conventional SSD

User Space

IOCTRLIOCTRLKernel SpaceKernel Space

User SpaceUser Space

Buffered IOBuffered IODirect IODirect IO

(a) (b)

PCIE Driver

SDF

Page
Cache

1



30 

Design - Hardware 
Specifications 

• 25nm MLC NAND, 44 channels, ONFI 1.x 
asynchronous 40Mhz 

• 5 FPGA, 4 Spartan-6 for FTL, Virtex-5 for PCIE 

Development cost 

• 12K lines of Verilog RTL (4K lines for FTL), 3K lines of C 
code for driver and file system  

• 2 persons for 7 months  

• Hardware board designed by ODM 

 

 

 
 

PCIEx8

Virtex-5

Spartan-6 Spartan-6 Spartan-6 Spartan-6

11 channels 11 channels 11 channels 11 channels
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Hardware Design 

Simple hardware  
• No static wear-leveling and garbage collection 

• No data stripping logic and parity coding  

• No hardware cache and battery (or capacitor) 

FTL 
• Dynamic wear-leveling 

• bad-block management 

• block-level address mapping 

Fault tolerant  
• 30b BCH per 1KB block 

• Reliance on system-level system 

• Remove parity code  

• Only 1 error detected with six months  

    and recovered by system-level replication 
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Evaluations  

Setup 

• HOST 
– Intel E5620x2, 2.4GHz 

– 32GB memory 

– 2.6.32 Linux Kernel 

 

•  SSD 
– Huawei Gen3 PCIE based, 44 CH, 25nm MLC NAND, 16GB/CH 

– SDF is the same hardware configuration  with SSD 
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Evaluations  

Micro benchmark: throughput  

• 99% read bandwidth and 95% write bandwidth utilization 

 

 

 

• Throughput scales linearly with channel count 
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Throughput variation  
• Setup: 8*44MB writes when SSD and SDF are 95% full  

• SDF maintains a latency of 380ms.  

• SSD’s latency is 7.8x higher and highly variable.  

• 95% of raw write bandwidth for SDF and 11.4% for SSD 
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Production system  
• Various data management systems implemented as Key-

value stores 

• Log-based merge tree 

• 3000 SDF used in Baidu’s Table system (web page 
repository) 

• Batch size: number of requests issued in one batch  

• Slice: a KV store responsible for a given range of keys. 

 

Experiments setup 
• Master node with 2 10Gbps NIC 

• Huawei Gen3 SSD with 25% OP 
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512KB random reads 
• Data mining job is random read intensive 

• Each server contains 50~60 slices 

• 1 slice: SSD is better when batch size is less than 32 

• 8 slice: SDF is 3x better than SSD 
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Sequential read 
• Building index generates mostly sequential reads 

• Throughput of SSD degrades with the increase of read  

• Throughput of SDF increases almost  linearly with the slide count 
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Summary of SDF  

Key ideas 

• Exposes flash channels to software 

• SW/HW co-design 

Results 

• 95% write and 99% read bandwidth utilization  

• 99% capacity utilization 

• 50% cost reduction per GB compared with SSD for 
workload on the production systems 
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A Naïve Design: Hash Table on Flash/SSD 

Flash 

Cannot move entire hash table to the SSD: 

Keys are likely to hash to random locations  

Random 

writes 

SSDs: FTL handles random writes to some extent; 

But garbage collection overhead is high 

  ~200 lookups/sec and ~200 inserts/sec with WAN 

optimizer workload,  << 10 K/s and 5 K/s  



40 

DRAM 

Flash 

Can’t assume locality in requests – DRAM as cache won’t work  

A Naïve Design: Hash Table on Flash/SSD (con’d) 
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Three Metrics to Minimize 

Memory overhead 

Read amplification 

Write amplification 

• Ideally 0 (no memory overhead) 

• Limits query throughput 

• Ideally 1 (no wasted flash reads) 

• Limits insert throughput 

• Also reduces flash life expectancy 

• Must be small enough for flash to last a few years 

= Index size per entry 

= Flash reads per query 

= Flash writes per entry 
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Design I: FAWN for Fast Read and Fast Write 

David G. Andersen, et al,  FAWN: a Fast Array of Wimpy Nodes, 

on SOPS’09 

FAWN (Fast Array of Wimpy Nodes) 

−  A Key-Value Storage System 

–  I/O intensive, not computation  

– Massive, concurrent, random , small-sized data access  

−A new low-power cluster architecture  

– Nodes equipped with embedded CPUs + FLASH 

– A tenth of the power compared to conventional architecture 
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FAWN System 

Hash Index to map 160-bit keys to a value stored in the 

data log; 

It stores only a fragment of the actual key in memory to 

find a location in the log => reduce memory use. 

How to store, lookup, update, and delete? 

How to do garbage collection? 

How to reconstruct after a crash, and how to speed up the 

reconstruction? 

Why is a Delete entry necessary? (hint: fault tolerance)  
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FAWN DataStore  

Chained 

hash 

entries 

in each 

bucket 
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DRAM Must be Used Efficiently 

DRAM used for index (locate) items on flash 

1 TB of data to store on flash 

4 bytes of DRAM for key-value pair (previous state-of-the-art) 

45 
Key-value pair size (bytes) 

Index size 

 (GB) 

32 B: Data deduplication 

    => 125 GB! 

168 B: Tweet 

   => 24 GB 

1 KB: Small image 

   => 4 GB 
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Memory use is not proportional to the KV item count. 

Place the hash table buckets, including the links, to the 

flash. 

Only the first pointers to buckets (Hash table directory), are 

in memory.   

Design II: SkimpyStash for Small Memory Demand 

Debnath et al., SkimpyStash: RAM Space Skimpy Key-

Value Store on Flash-based Storage  in SIGMOD’11 
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Use in-RAM write buffer to enable batched writes (timeout 

threshold to bound response time and concurrent write and 

flush) 

Basic operations:  

  lookup: HT directory in memory  bucket on the flash  

  insert: buffer in memory    batched write to the flash 

as a log and linked into HT directory. 

  delete: write a NULL entry 

Design II: SkimpyStash for Small Memory Demand 
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SkimpyStash Architecture 
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Garbage collection in the log: 
 Start from the log tail (the currently written end). 

 Do page by page, 

 Cannot update predecessor’s pointer in the bucket. 

 Compact and relocate whole bucket  leave orphans for garbage 

collection.   

The cost of write/delete/lookup 
     In the worst case how many flash reads are needed for one lookup?  

 The consequence of unbalanced buckets 
         Exceptionally long buckets  unacceptably long lookup time! 

Solution: two-choice-based hashing: each key would be hashed to two 

candidate HT directory buckets, using two hash functions h1 and h2, 

and inserted into the one that has currently fewer elements 

How to know in which bucket to search for a lookup?  

       Use of Bloom filter for each bucket. The filter is dimensioned one 

byte per key and assume average number of items in each bucket. 
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Background on Bloom Filter 

 Data structure proposed by Burton Bloom 

 Randomized data structure 

– Strings are stored using multiple hash functions 

– It can be queried to check the presence of a string 

 Membership queries result in rare false positives but 

never false negatives 

 Originally used for UNIX spell check 

 Modern applications include : 

– Content Networks 

– Summary Caches 

– route trace-back 

– Network measurements 

– Intrusion Detection 
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Programming a Bloom Filter 
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Querying a Bloom Filter 
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Querying a Bloom Filter (False Positive) 
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Optimal Parameters of a Bloom Filter 

Bloom filter computes k hash functions on input 

Key Point : false positive rate decreases exponentially 

with linear increase in number of bits per string (item) 
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The consequence 

of spreading a 

chain of entries in 

a bucket across 

pages. 

 

Use compaction to 

ameliorate the 

issue. 

 

 

 

Compaction in SkimpyStash 
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  Long/Unpredictable/unbounded lookup time.  
 

The Weaknesses of SkimpyStach  
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Design III: BufferHash using Equally-sized Levels 

Anand et al., Cheap and Large CAMs for High Performance 

Data-Intensive Networked Systems  in NSDI’10 

Move entire hash tables to the disk/flash  

The store consists of multiple levels and each is 

organized as a hash table. 
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The approach: Buffering insertions 

Control the impact of random writes 

Maintain small hash table (buffer) in memory  

As in-memory buffer gets full, write it to flash 

•  We call in-flash buffer, incarnation of buffer 

 

Incarnation: In-flash 

hash table 

Buffer: In-memory  

hash table 

DRAM Flash SSD 
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Two-level memory hierarchy 

DRAM 

Flash 

Buffer 

Incarnation table 

Incarnation 

1 2 3 4 

Net hash table is: buffer + all incarnations 

Oldest 

incarnation 

Latest 

incarnation 
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Lookups are impacted due to buffers 

DRAM 

Flash 

Buffer 

Incarnation table 

Lookup key 

In-flash 

look ups 

 Multiple in-flash lookups. Can we limit to only one? 

 Use Bloom Filters 

4 3 2 1 
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Bloom filters for optimizing lookups 

DRAM 

Flash 

Buffer 

Incarnation table 

Lookup key 

Bloom filters 

In-memory 

look ups 
False positive!  

Configure carefully!  

 

4 3 2 1 

2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01!  
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Update: naïve approach 

DRAM 

Flash 

Buffer 

Incarnation table 

Bloom filters 

Update key 

Update key 

Expensive  

random writes 

 Discard this naïve approach 

4 3 2 1 
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Lazy updates 

DRAM 

Flash 

Buffer 

Incarnation table 

Bloom filters 

Update key 

Insert key 

4 3 2 1 

 Lookups check latest incarnations first 

Key, new 

value 

Key, old 

value 
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Weaknesses of BufferHash 

Excessively large number of (incarnations) levels makes BF less 
effective. 

Searching in individual incarnations is not efficient. 
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Design IV: SILT with Levels of 

Dramatically-different Sizes 
Read 

Amplification 

Memory overhead (bytes/entry) 

FAWN-DS 

BufferHash 

SkimpyStash 

SILT 

Hyeontaek Lim et al, SILT: A Memory-Efficient, High-Performance Key-Value 

Store, in SOSP’11. 
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Seesaw Game? 

Memory efficiency High performance 

FAWN-DS 

BufferHash 
SkimpyStash 

How can we 

improve? 
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SILT Sorted Index 

(Memory efficient) 

SILT Log Index 

(Write friendly) 

Solution Preview: (1) Three Stores 

with (2) New Index Data Structures 

Memory 

Flash 

SILT Filter 

Inserts only go to Log 

Data are moved in background 

Queries look up stores in sequence (from new to old) 
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LogStore: No Control over Data Layout 

6.5+ bytes/entry 1 

Memory overhead Write amplification 

Inserted entries 

are appended 

On-flash log 

Memory 

Flash 

Still need pointers: 

size ≥ log N bits/entry 

SILT Log Index (6.5+ B/entry) 

(Older) (Newer) 

Naive Hashtable (48+ B/entry) 
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LogStore: Using Cuckoo Hash to Embed Buckets into HT Directory 

How to find the alternative slot for displacement by storing hash 
index in the tag? 
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HashStore: Remove in-memory HT (or the index) 

HashStore saves 

memory over 

LogStore by 

eliminating the 

index and 

reordering the on-

flash (key,value) 

pairs from insertion 

order to hash order. 
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SortedStore: Space-Optimized Layout 

On-flash sorted array 

Memory 

Flash 

SILT Sorted Index (0.4 B/entry) 

Need to perform bulk-

insert to amortize cost 

To merge HashStore entries into the SortedStore, SILT must 

generate a new SortedStore 
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1.01 0.7 bytes/entry 

5.4 

Memory overhead 

Read 

amplification 
Write 

amplification 

SILT’s Design (Recap) 

On-flash sorted array 

SILT Sorted Index 

On-flash 

log 

SILT Log Index 

On-flash hashtables 

SILT Filter 

Merge Conversion 

<SortedStore> <LogStore> <HashStore> 
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Any Issue with SILT?  

 SILT provides both memory-efficient and high-

performance key-value store 

 Multi-store approach 

 Entropy-coded tries 

 Partial-key cuckoo hashing 

 

 The weakness: Write amplification is way too 

high! 
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Design V: Google’s BigTable and LevelDB 

Chang, et al., Bigtable: A Distributed Storage System for 

Structured Data in OSDI’06. 

 A multi-layered LSM-tree structure 

 Progressively sort data for small memory demand 

 Small number of levels for effective BF use. 



75 

Scale Problem 

• Lots of data 

• Millions of machines 

• Different project/applications 

• Hundreds of millions of users 

Storage for (semi-)structured data 

No commercial system big enough 

• Couldn’t afford if there was one 

Low-level storage optimization helps 

performance significantly 

Much harder to do when running on top of a database layer 

 

Design V: Google’s BigTable and LevelDB 

to Scale Data Store 
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Bigtable 

Fault-tolerant, persistent 

Scalable 

• Thousands of servers 

• Terabytes of in-memory data 

• Petabyte of disk-based data 

• Millions of reads/writes per second, efficient 

scans 

Self-managing 

• Servers can be added/removed dynamically 

• Servers adjust to load imbalance 
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77 

 

 

Data model: a big map 
• <Row, Column, Timestamp> triple for key 

• Each value is an uninterpreted array of bytes 

• Arbitrary “columns” on a row-by-row basis 

• Column family:qualifier. a small number of families and large 

number of columns 

• Lookup, insert, delete API 

     Each read or write of data under a single row key is atomic 
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SSTable 

Immutable, sorted file of key-value pairs 

Chunks of data plus an index  

• Index is of block ranges, not values 

• Index loaded into memory when SSTable is opened 

• Lookup is a single disk seek 

Alternatively, client can load SSTable into memory 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 
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Tablet  

Contains some range of rows of the table 

Unit of distribution & load balance 

Built out of multiple SSTables 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 

Index 

64K 

block 

64K 

block 

64K 

block 

SSTable 

Tablet Start:aardvark End:apple 
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Table 

Multiple tablets make up the table 

 

 

SSTable SSTable SSTable SSTable 

Tablet 

aardvark apple 

Tablet 

apple_two_E boat 
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Finding a tablet 

• Client library caches tablet locations 
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Servers 

Tablet servers manage tablets, multiple tablets per 
server. Each tablet is 100-200 MBs 

• Each tablet lives at only one server 

• Tablet server splits tablets that get too big 

 

Master responsible for load balancing and fault 
tolerance 

• Use Chubby to monitor health of tablet servers, restart 
failed servers 

• GFS replicates data. prefer to start tablet server on same 
machine that the data is already at 
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Editing/Reading a table 

Mutations are committed to a commit log (in GFS) 

Then applied to an in-memory version (memtable) 

Reads applied to merged view of SSTables & memtable 

Reads & writes continue during tablet split or merge 

SSTable 

(sorted) 

SSTable 

(sorted) 

Tablet 

apple_two_E boat 

Insert 

Insert 

Delete 

Insert 

Delete 

Insert 

Memtable 

 (sorted) 



84 

Bigtable Tablet 

LevelDB is similar to a single Bigtable tablet  
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Compactions 

Minor compaction – convert a full memtable into an 
SSTable, and start a new memtable 

• Reduce memory usage  

• Reduce log traffic on restart 

 

 

Major compaction 

• Merging compaction that results in only one SSTable 

• No deletion records, only live data 
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Log-Structured Merge-Tree (LSM-tree) 

• Optimized for fast random updates, inserts and deletes 

with moderate read performance.  

 

• Convert the random writes to sequential writes 

– Accumulate recent updates in memory 

– Flush the changes to disks sequentially in batches 

– Merge on-disk components periodically 

 

• At the expense of read performance 

Management of SSTable -- LSM-tree 
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Google’s LevelDB: Progressively Increasing Level Size 

MemTable

Write

Immutable
MemTable

Memory

Disk
Dump

……

…

Level 0

Level 1
10MB

Level 2 
100 MB

Compaction
Log

Manifest

Current

SSTable

MemTable 

K1  V1 K2  V2 

K3  V3 

Immutable 
MemTable 

SSTable 

SSTable SSTable 

SSTable SSTable 
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LevelDB Write Flow 



89 

LevelDB Read Flow 

Bloom Filter  
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LevelDB Compact (L0/L1) 
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LevelDB Compact (L0/L1 Move) 
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Current KV storage systems have one or more of the issues: 

(1)very high data write amplifications;  

(2)Large index set; and  

(3)dramatic degradation of read performance with overspill 
index out of the memory.  

 

LSM-trie: 

(1)substantially reduces metadata for locating items,  

(2) reduces write amplification by an order of magnitude, 

(3) needs only at most two disk accesses with each KV read 
even when only less than 10% of metadata (Bloom Filters) 
can be held in the memory 

Design VI: LSM-trie: An LSM-tree-based Ultra-

Large Key-Value Store for Small Data Items 
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LSM-trie: A New Level Growth Pattern 
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LSM-trie: Minimize Write Amplification 

 To enable linear growth pattern, the SSTables in one 

column of sub-levels of a level must have the same key 

range. 

 KV items are hashed into and organized in the store. 

 160b-Hash key is generated with SHA-1 for uniform 

distribution.    
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The Trie Structure 
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Compaction in LSM-trie 
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How about out-of-core the Bloom Filters? 

 To scale the store to very large size in terms of both capacity 

and KV-item count (e.g, a 10 TB store containing 100 billion 

of 100-byte KV items). A big challenge on designing such a 

large-scale store is the management of its metadata that often 

have to be out of core (the DRAM). 

 LSM-trie hashes keys into buckets within each SSTable 

(Htable).  
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But the load on the buckets in an Htable may not be 

balanced. 
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Load on the buckets in an Htable not be balanced. 
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Balance the load using item migration 

 How to determine if an item has been migrated? 

 Does BF still work after migration? 
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The load is balanced! 
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A Summary of the Use of 160b Hashkey 
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BF is clustered for at most one Access at each level  
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Prototyped LSM-trie  

 32MB HTables and an amplification factor (AF) of 8. 

 The store has five levels. In the first four levels, LSM-trie uses 

both linear and exponential growth pattern. 

 All the Bloom filters for the first 32 sub-levels are of 4:5 GB, 

assuming a 64B average item size and 16 bit Bloom filter per 

key. Adding metadata about item migration within individual 

HTables (up to 0:5 GB), LSM-trie needs up to only 5GB 

memory to hold all necessary metadata 

 At the fifth level, which is the last level, LSM-trie uses only 

linear growth pattern. As one sub-level at this level has a 

capacity of 128 G, it needs 8 such sub-levels for the store to 

reach 1 TB, and 80 such sub-levels to reach 10 TB. 

 LSM-trie uses 16-bit-per-item Bloom filters, the false positive 

rate is only about 5% even for a 112-sub-level 10 TB KV store. 
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Write Throughput 
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Write Amplification 
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Read Throughput 
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Summary 

LSM-trie is designed to manage a large set of small data. 

It reduces the write-amplification by an order of magnitude. 

It delivers high throughput even with out-of-core metadata. 

 

The LSM-trie source code can be downloaded at: 

https://github.com/wuxb45/lsm-trie-release 
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Atlas: Baidu’s Key-value Storage System 

for Cloud Data 
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Cloud Storage Service 

 Cloud storage services become increasingly popular.  
 Baidu Cloud has over 200 million users and 200PB user data. 

 

 To be attractive and competitive, they often offer large free 
space and price the service modestly. 
 Baidu offers 2TB free space for each user. 

 

 The challenge is how to economically provision resources and 
also achieve service quality. 
 A large number of servers, each with local large storage space. 

 The data must be reliably stored with a high availability. 

 Requests for any data in the system should be served reasonably fast. 

 

 

   



111 

Challenges on Baidu’s System 

 The Challenges 
 Can the X86 processors be efficiently used? 

 Can we use a file system to store data at each server? 

 Can we use an LSM-tree-based key-value store to store the data? 

Distribution of requests on a typical day in 2014. 

 The workload 
 Request size is capped at 256KB for system efficiency. 

 Majority of the requests are for data between 128KB and 256KB.  
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Challenge on Processor Efficiency 
 The X86 processors (two 4-core 2.4GHz E5620) were 

consistently under-utilized  
 Less than 20% utilization rate with nine hard disks installed on a server. 

 Adding more disks is not an ultimate solution.  

 

 The ARM processor (one 4-core 1.6GHz Cortex A9) can provide 
similar I/O performance. 
 The ARM processor is more than 10X cheaper and more energy-efficient. 

 

 

   
 Baidu’s customized ARM-based server. 

 Each 2U chassis has six 4-core Cortex A9 
processors. 

 Each processor comes with four 3TB SATA 
disks. 

 However, each processor can support 
only 4GB memory. 
 On each chassis only 24GB memory available 

for accessing data as large as 72TB data.   
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Challenge on Using a File System 

Memory cannot hold all metadata. 
 Most files would be of 128-256KB.  

 Access on the storage has little locality. 

 More than one disk accesses are often required to access a 
file. 

   

The approach used in Facebook’s Haystack is not 
sufficient.  
 There are 3.3GB metadata for 16TB 128KB-data. 

 System software and buffer cache also compete for 4GB 
memory.   
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Memory 

Challenge on Using LSM-tree Based Key-value Store 

 LSM-tree-based KV store is designed for storing many small 
key-value items, represented by Google’s LevelDB.  

 

 The store is memory efficient.  
 The metadata is only about 320MB for 16TB 128KB-data.  
 

  However, the store needs constant compaction operations to 
sort its data distributed across levels of the store.   
 For a store of 7 levels, the write amplification can be over 70. 

 Very limited I/O bandwidth is left for servicing frond-end user requests. 
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Memory 

Challenge on Using LSM-tree Based Key-value Store 

 LSM-tree-based KV store is designed for storing many small 
key-value items, represented by Google’s LevelDB.  

 

 The store is memory efficient.  
 The metadata is only about 320MB for 16TB 128KB-data.  

 

  However, the store needs constant compaction operations to 
sort its data distributed across levels for such a small metadata.   
 For a store of 7 levels, the write amplification can be over 70. 

 Very limited I/O bandwidth is left for servicing frond-end user requests. 
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Memory 

Challenge on Using LSM-tree Based Key-value Store 

 LSM-tree-based KV store is designed for storing many small 
key-value items, represented by Google’s LevelDB.  

 

 The store is memory efficient.  
 The metadata is only about 320MB for 16TB 128KB-data.  

 

  However, the store needs constant compaction operations to 
sort its data distributed across levels for such a small metadata.   
 For a store of 7 levels, the write amplification can be over 70. 

 Very limited I/O bandwidth is left for servicing frond-end user requests. 
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Value Key 

Reducing Compaction Cost  
 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 

?  

?  ?  ?  ?  
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Pointe

r 
Value Key 

Reducing Compaction Cost  
 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 

Patch(64MB) 
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Reducing Compaction Cost  
 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 

Patch(64MB) 
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Reducing Compaction Cost  
 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 

Patch(64MB) 
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Reducing Compaction Cost  
 In a KV item, value is usually much larger than the key.  

 

 Values are not necessary to be involved in compactions.  
 

  Move and place the values in a fixed-size container (block), 
and replace the values with pointers in KV items. 

 

 Memory 

Patch(64MB) 
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Features of Baidu’s Cloud Storage System (Atlas)  

 A hardware and software co-design with customized low-power 
servers for high resource utilization 

 Separate metadata (keys and offsets) and data (value blocks) 
management systems. 

 Data are efficiently protected by erasure coding.   

 

 

Memory 
Block (64MB) 

Storage of Metadata 

Keys Values 

Storage of Data 
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Big Picture of the Atlas System  

PIS (Patch and Index System) 

RBS (RAID-like Block 

System) 

Patch (64MB) 

Keys 

Values 

Block (64MB) 
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Distribution of User Requests  

Patch (64MB) 

PIS slice 

Keys 

Values 

Patch (64MB) 

Keys 

Values 

PIS slice 

…… 

Atalas Clients 

(Applications) 

Key hashing Key hashing 
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Redundancy for Protecting KV items  

Three PIS slice units in a PIS 

slice 

R
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S
 (

R
A

ID
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ck
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em
) Block (64MB) 

Patch (64MB) 

Keys 

Values A
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… Eight  

8MB-parts  

Four RS-coded parts  
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The Architecture of Atlas 

PIS 

Slice 

PIS 

Slice 

RBS 

Partserver 

RBS 

Partserver 

Applicatio

n 

Shadow 

RBS 

Master 

RBS 

Master 

Use LSM-tree KV Store:  

Key  (logical) parts/block 

(logical) parts/block  

 Physical Partservers 
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Serving a Write Request  

RBS 

Partserver 
RBS 

Partserver 

Applicatio

n 

RBS 

Master 

(1) Send request to a PIS slice. 

(4) Obtain 12 + 3 

partserver IPs 

(2) Write the KV item in the 

patch, and acknowledge client; 

Index 

Patch 

(5) Write the parts to the partsevers.  

(3) If the patch is full, convert it 

into a block, and partition and 

compute it into 8+4 parts. 

(4) Record (key, blockID, offset) 

into the index.   
(6) Record (blockID, list  

of partserver IPs)  

PIS 

Slice 
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Serving a Read Request  

128 

RBS 

Partserver 

RBS 

Partserver 

Applicatio

n 

RBS 

Master 

(1) Send request to a PIS slice. 

(4) Get partserver IP for 

the block ID  

(2) If the KV item is in the 

patch, return the value; 
Index 

Patch 

(5) Retrieve the value from 

the partserver  

(6) Part recovery is initiated if it is a failure.   

(3) Otherwise, Get() block ID 

and offset from the index. 
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Serving Delete/Overwrite Requests 
 KV pairs stored in Atlas are immutable. 

 

 Blocks in Atlas are also immutable. 

 

 A new KV item is written into the system to service a 
delete/overwritten request. 

 

 Space occupied by obsolete items are reclaimed in a garbage 
collection (GC) process. 

 

 Periodically two questions are asked about a block in the RBS 
subsystem, and positive answers to both lead to a GC.  

 

1) Is the block created earlier than a threshold (such as one week ago)? 

2) Is the ratio of valid data in the block smaller than a threshold (such as 80%)? 
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Atlas’s Advantages on Hardware Cost and 

Power   

 Atlas saves about 70% of hardware cost per GB storage 

 
 Using ARM servers to replace x86 servers 

 Using erasure coding to replace 3-copy replication. 

 

 Power consumption is reduced by about 53% per GB storage. 

 
 The ARM processors are more power efficient. 

 The ARM server racks are more space efficient, reducing energy 
cost for power supply and thermal dissipation. 
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Comparison with the Prior System  
Reference system (pre-Atlas) 

• Similar PIS subsystem. 

• All data are managed solely by the LSM-tree-based KV store.  

Run on a 12-server X86 cluster.  

 Atlas’s throughput at one node 

Read : Write = 3:1 All writes 
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Atlas on a Customized ARM cluster 

A cluster of 12 ARM servers. 

Each hosts multiple PIS slices and RBS partservers.  

Each server has a 4-core Marvell processor, 4GB 
memory,  four 3TB disks. 

1Gbps full-duplex Ethernet adapter. 

Request size is 256KB. 
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Throughput at One Node with Diff. Request Types  

All writes All Reads 

Read : Write = 3:1 

More I/O and 

Network bandwidth 

Consumed  
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Latencies with Diff. Request Types  

All writes All Reads 
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Throughput at one Node of a Production 

System 

Reads 

write 
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Disk Bandwidth at one Node of a Production 

System 

Reads 

write 
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Summary 

 Atlas is an object store using a two-tier design separating 

the managements of keys and values.  

 

 Atlas uses a hardware-software co-design for high cost-

effectiveness and energy efficiency. 

 

 Atlas adopts the erasure coding technique for space-efficient 

data protection. 




