
1

Building File Systems and Distributed Data Management Systems

for Performance and Reliability

龙星计划课程: 文件系统和分布式数据管理系统

Lecture 3: Key-Value Data Management Systems

2

Key-Value Store

Clients

PUT(key, value)

value = GET(key)

DELETE(key)

Key-Value Store

Cluster

• Dynamo at Amazon

• BigTable (LevelDB) at Google

• Redis at GitHub, Digg, and Blizzard Interactive

• Memcached at Facebook, Zynga and Twitter

• Voldemort at Linkedin

3

NoSQL DB and KV Store

 A NoSQL or Not Only SQL database stores and organizes
data differently from the tabular relations used in relational
databases.

 Why NoSQL?

 Simplicity of design, horizontal scaling, and finer control
over availability.

 It can be classified as column, document, key-value, and
graph store based on their data models.

 The key-value model is one of the simplest non-trivial data
models, and richer data models are often implemented on
top of it.

 Applications store their data in a schema-less way.

 Array, linked list, binary search trees, B+ tree, or hash
table …?

4

The First Example: Memcached

5

Memcached

5

 memcached is a high-performance, distributed in-

memory object caching system, generic in nature

 It is a key-based cache daemon that stores data and

objects wherever dedicated or spare RAM is available

for very quick access

 It is a distributed hash table. It doesn’t provide

redundancy, failover or authentication. If needed the

client has to handle that.

6

Memcached

6

 To reduce the load on the database by caching

data BEFORE it hits the database

 Can be used for more than just holding database

results (objects) and improve the entire

application’s response time

 Feel the need for speed

 Memcache is in RAM - much faster then hitting the

disk or the database

7

Memcached

REQUEST CHECK CACHE
CACHE_

GET()
QUERY CACHE

RETURN

CACHED

DATA

7

8

Memcached

Distributed memory caching system as a cluser

8

Hash Function

Memcached Servers

Key

9

Memcached Workload Pattern at Facebook

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, Mike

Paleczny. Workload Analysis of a Large-Scale Key-Value Store .

In Proceedings of the SIGMETRICS'12,

10

Memcached Workload Pattern at Facebook

11

Memcached Workload Pattern at Facebook

Why are update requests represent more expensive in memcached?

12

The Data Structure

 Slab-based memory allocation: memory is divided into 1 MB slabs

consisting of fixed-length chunks. E.g, slab class 1 is 72 bytes and each

slab of this class has 14563 chunks; slab class 43 is 1 MB and each slab

has only one chunk. Least-Recently-Used (LRU) algorithm to select the

items for replacement in each slab-class queue. (why slab?)

 Lock has to be used for integrity of the structure, which is very

expensive (why?)

13

A Use Scenario of KV store:

Data-intensive Networked Systems

Data center Branch office

WAN

WAN optimizers
Object

Object store (~4 TB)
Hashtable (~32GB)

Look up

Object

Chunks(4 KB)

Key

(20 B)

Chunk

pointer Large hash tables (32 GB)

High speed (~10 K/sec)

inserts and evictions

High speed (~10K/sec)

lookups for 500 Mbps link

14

Candidate options

DRAM 300K $120K+

Disk 250 $30+

Random

reads/sec

Cost

(128 GB)

Flash-SSD

10K*

$225+

Random

writes/sec

250

300K

5K*

Too

slow

Too

expensive

* Derived from latencies on Intel M-18 SSD in

experiments

2.5 ops/sec/$

Slow

writes

How to deal with slow writes of Flash SSD?

 +Price statistics from 2008-09

15

Flash/SSD primer

Random writes are expensive

 Avoid random page writes

Reads and writes happen at the granularity of a flash page

 I/O smaller than page should be avoided, if possible

16

Flash Solid State Drive (SSD)

Controller

(FTL)
RAM

Flash Memory

File System

Read pages Write pages

Block Interface

17

17

Basics of NAND Flash Memory

Three operations: read, write, erase

Reads and writes are done at the granularity of a page (2KB or 4KB)

Erases are done at the granularity of a block

• Block: A collection of physically contiguous pages (64 or 128)

• Block erase is the slowest operation requiring about 2ms

Writes can only be done on erased pages

Page

Block

Page

Page

Page

Data OOB

Block

……

Page

Page

Page

Data OOB

Block

…… ……

NAND Flash

Page

Page

Data OOB

……
Page

Page

Data OOB

……

Page Page Page

18

Over-writes on the same location (page) are expensive

Updates are written to a free page

OOB area

• Keeps valid/free/invalid status

• Stores LPN, used to reconstruct mapping table upon power
failure

(0, 0)

Out-of-Place Updates

Block 0

Flash Mapping Table

A

LPN PPN (PBN, Offset)

B (0, 1)

C (0, 2)

(0, 3) A Update

 Free

LPN=A, V

LPN=B, V

LPN=C, V

Data OOB

 Invalid

LPN=A, V

19

19

Flash Translation Layer (FTL)

Flash Translation Layer
• Emulates a normal block device interface

• Hides the presence of erase operation/erase-before-write

• Address translation, garbage collection, and wear-leveling

Address Translation
• Mapping table present in small RAM within the flash
device

20

SDF: A Customized SSD for Baidu

Jian Ouyang, Shiding Lin,1 Song Jiang, Zhenyu Hou, Yong Wang,

and Yuanzheng Wang, SDF: Software-Defined Flash

for Web-Scale Internet Storage, Systems, in ASPLOS’14

SSD deployment at a large scale since 2007

•Purchase tens of thousands of SSDs each year.

•Initially adopted SSDs in index servers in 2007

•SSDs are commonly deployed in various servers.

•SSDs support various services, such as indexing, CDN, SQL, and
No-SQL(table, KV, object).

However, Baidu is increasingly challenged by the SSDs’ inadequacies.

21

Background – SSD Limitations (1/3)

Low bandwidth utilization

• 70~80% for read and 40~50% for write

• 40% or less in real workload

Reasons

• Current architecture limits exploitation of hardware parallelism
– Centralized SSD controller becomes the bottleneck.

• Access interface is not optimized for the flash

– Write granularity (4KB vs. erase block size)

22

Background – SSD Limitations (2/3)

Limited capacity utilization
• Only 50%~70% for applications

Reasons

• 7%~50% raw capacity for over-provisioning (OP)
– To accommodate out-of-place updates

• ~10% raw capacity for parity coding across flash
channels

– To recover from channel crash

23

Background – SSD Limitations (3/3)

Less predictable performance
• Quality variation of online services

Reasons
• Garbage collection

– Blocking the normal operations

• Linux IO stack
– Difficult to configure
– Difficult to debug

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

VFSVFS

Generic Block LayerGeneric Block Layer

IO SchedulerIO Scheduler

P
C

IE

SCSI Mid-layer

SATA and SAS Translation

Block DeviceFile System

Low Level Device Driver

 Conventional SSD

User SpaceUser Space

Buffered IOBuffered IODirect IODirect IO

Page
Cache

1

24

Background – challenges

Large-scale

• 10,000+ SSD deployment per year (10PB+ capacity)

Challenges

• Acquisition of extra devices

• Higher cost

– Installation, cooling, and operational energy cost

– Testing and debugging

25

Design Goals

An ideal SSD

• Delivers all raw hardware bandwidth to applications

• Makes all raw hardware capacity available to

applications

• Provides predictable performance

Approaches

• Explore parallelism

– Highly concurrent access

– Keep all hardware channels busy

• Explore raw capacity

– Remove spaces for over-provisioning and parity coding

• Eliminate redundant layers

– Remove Linux IO stack and file system

26

Rethinking SSD in Data Center
Design principles

• HW/SW co-design

• Simplified hardware and system

The solution: Software-Defined Flash (SDF)

• Software defined

– Expose low level hardware interface to software

– Software can control hardware completely

• New hardware architecture

– Expose hardware channels to software

– Individual FTL controller for each channel

• New HW/SW interface

– Write in the unit of erase block size

• Leverage global resource for data safety
– Removes across-channel parity coding

27

Designs

Software/hardware interface

Software stack

Hardware implementations

28

Design - SW/HW Interface

Expose flash channels to applications
• Data placement determined by software

• Explores hardware parallelism to software

• Enforce synchronous IO

API

• Read: 8KB

• Write: 2MB aligned

• Erase: 2MB aligned

Erase conducted by software

• Erases before writes

• Scheduled by applications

............Flash
ch_0

Flash
CH_0

Flash
ch_0

Flash
CH_1

Flash
ch_0

Flash
CH_N

SSD Controller

/dev/sda

Flash
ch_0

Flash
CH_0

Flash
ch_0

Flash
CH_1

Flash
ch_0

Flash
CH_N

SSD Ctrl

/dev/sda0 ～/dev/sdaN

Conventional SSDConventional SSD SDFSDF

SSD Ctrl SSD Ctrl

29

Design - Software Stack

Removing unnecessary software layers
• To reduce latency and CPU cycles

• To remove complexity of kernel configurations

User-defined scheduler

• Data layout

• Erase scheduling

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

VFS

Generic Block LayerGeneric Block Layer

IO Scheduler

P
C

IE

SCSI Mid-layer

SATA and SAS Translation

Block DeviceFile System

Low Level Device Driver

 Conventional SSD

User Space

IOCTRLIOCTRLKernel SpaceKernel Space

User SpaceUser Space

Buffered IOBuffered IODirect IODirect IO

(a) (b)

PCIE Driver

SDF

Page
Cache

1

30

Design - Hardware
Specifications

• 25nm MLC NAND, 44 channels, ONFI 1.x
asynchronous 40Mhz

• 5 FPGA, 4 Spartan-6 for FTL, Virtex-5 for PCIE

Development cost

• 12K lines of Verilog RTL (4K lines for FTL), 3K lines of C
code for driver and file system

• 2 persons for 7 months

• Hardware board designed by ODM

PCIEx8

Virtex-5

Spartan-6 Spartan-6 Spartan-6 Spartan-6

11 channels 11 channels 11 channels 11 channels

31

Hardware Design

Simple hardware
• No static wear-leveling and garbage collection

• No data stripping logic and parity coding

• No hardware cache and battery (or capacitor)

FTL
• Dynamic wear-leveling

• bad-block management

• block-level address mapping

Fault tolerant
• 30b BCH per 1KB block

• Reliance on system-level system

• Remove parity code

• Only 1 error detected with six months

 and recovered by system-level replication

LB_IF
DDR
CTRL

DDR3

BCH

CH1_ENGINE
DDR3

Data_Path NAND_CTRL

LA2PA BBM DWL

CH0_ENGINE

CH9_ENGINE

CH10_ENGINE

NAND

......

NAND

NAND

NAND

32

Evaluations

Setup

• HOST
– Intel E5620x2, 2.4GHz

– 32GB memory

– 2.6.32 Linux Kernel

• SSD
– Huawei Gen3 PCIE based, 44 CH, 25nm MLC NAND, 16GB/CH

– SDF is the same hardware configuration with SSD

33

Evaluations

Micro benchmark: throughput

• 99% read bandwidth and 95% write bandwidth utilization

• Throughput scales linearly with channel count

0

200

400

600

800

1000

1200

1400

1600

4 8 12 16 20 24 28 32 36 40 44

 T
h

ro
u

gh
p

u
t

(M
B

/s
)

Channel Count

R:1.59GB/s

W:0.96GB/s

34

Throughput variation
• Setup: 8*44MB writes when SSD and SDF are 95% full

• SDF maintains a latency of 380ms.

• SSD’s latency is 7.8x higher and highly variable.

• 95% of raw write bandwidth for SDF and 11.4% for SSD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

La
te

n
cy

(m
s)

Time (# of Writes)

Huawei Gen3, 8*44MB Writes

0

100

200

300

400

500

600

700

800

900

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

Time (# of Writes)

Baidu SDF, 8MBx44threads Erases and Writes

35

Production system
• Various data management systems implemented as Key-

value stores

• Log-based merge tree

• 3000 SDF used in Baidu’s Table system (web page
repository)

• Batch size: number of requests issued in one batch

• Slice: a KV store responsible for a given range of keys.

Experiments setup
• Master node with 2 10Gbps NIC

• Huawei Gen3 SSD with 25% OP

36

512KB random reads
• Data mining job is random read intensive

• Each server contains 50~60 slices

• 1 slice: SSD is better when batch size is less than 32

• 8 slice: SDF is 3x better than SSD

0

200

400

600

800

1000

1200

1400

1600

1 4 8 16 32 44

Baidu SDF 1 slice

Huawei Gen3 1 slice

Th
ro

u
gh

p
u

t
(M

B
/s

)

Batch Size

0

200

400

600

800

1000

1200

1400

1600

1 4 8 16 32 44

Baidu SDF 8 slices

Baidu SDF 4 slices

Huawei Gen3 8 slices

Huawei Gen3 4 slices

Th
ro

u
gh

p
u

t
(M

B
/s

)

Batch Size

37

Sequential read
• Building index generates mostly sequential reads

• Throughput of SSD degrades with the increase of read

• Throughput of SDF increases almost linearly with the slide count

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

Baidu SDF

Huawei Gen3

Th
ro

u
gh

p
u

t
(M

B
/s

)

Slice Count

38

Summary of SDF

Key ideas

• Exposes flash channels to software

• SW/HW co-design

Results

• 95% write and 99% read bandwidth utilization

• 99% capacity utilization

• 50% cost reduction per GB compared with SSD for
workload on the production systems

39

A Naïve Design: Hash Table on Flash/SSD

Flash

Cannot move entire hash table to the SSD:

Keys are likely to hash to random locations

Random

writes

SSDs: FTL handles random writes to some extent;

But garbage collection overhead is high

 ~200 lookups/sec and ~200 inserts/sec with WAN

optimizer workload, << 10 K/s and 5 K/s

40

DRAM

Flash

Can’t assume locality in requests – DRAM as cache won’t work

A Naïve Design: Hash Table on Flash/SSD (con’d)

41

Three Metrics to Minimize

Memory overhead

Read amplification

Write amplification

• Ideally 0 (no memory overhead)

• Limits query throughput

• Ideally 1 (no wasted flash reads)

• Limits insert throughput

• Also reduces flash life expectancy

• Must be small enough for flash to last a few years

= Index size per entry

= Flash reads per query

= Flash writes per entry

42

Design I: FAWN for Fast Read and Fast Write

David G. Andersen, et al, FAWN: a Fast Array of Wimpy Nodes,

on SOPS’09

FAWN (Fast Array of Wimpy Nodes)

− A Key-Value Storage System

– I/O intensive, not computation

– Massive, concurrent, random , small-sized data access

−A new low-power cluster architecture

– Nodes equipped with embedded CPUs + FLASH

– A tenth of the power compared to conventional architecture

43

FAWN System

Hash Index to map 160-bit keys to a value stored in the

data log;

It stores only a fragment of the actual key in memory to

find a location in the log => reduce memory use.

How to store, lookup, update, and delete?

How to do garbage collection?

How to reconstruct after a crash, and how to speed up the

reconstruction?

Why is a Delete entry necessary? (hint: fault tolerance)

44

FAWN DataStore

Chained

hash

entries

in each

bucket

45

DRAM Must be Used Efficiently

DRAM used for index (locate) items on flash

1 TB of data to store on flash

4 bytes of DRAM for key-value pair (previous state-of-the-art)

45
Key-value pair size (bytes)

Index size

 (GB)

32 B: Data deduplication

 => 125 GB!

168 B: Tweet

 => 24 GB

1 KB: Small image

 => 4 GB

46

Memory use is not proportional to the KV item count.

Place the hash table buckets, including the links, to the

flash.

Only the first pointers to buckets (Hash table directory), are

in memory.

Design II: SkimpyStash for Small Memory Demand

Debnath et al., SkimpyStash: RAM Space Skimpy Key-

Value Store on Flash-based Storage in SIGMOD’11

47

Use in-RAM write buffer to enable batched writes (timeout

threshold to bound response time and concurrent write and

flush)

Basic operations:

 lookup: HT directory in memory bucket on the flash

 insert: buffer in memory batched write to the flash

as a log and linked into HT directory.

 delete: write a NULL entry

Design II: SkimpyStash for Small Memory Demand

48

SkimpyStash Architecture

49

Garbage collection in the log:
 Start from the log tail (the currently written end).

 Do page by page,

 Cannot update predecessor’s pointer in the bucket.

 Compact and relocate whole bucket leave orphans for garbage

collection.

The cost of write/delete/lookup
 In the worst case how many flash reads are needed for one lookup?

 The consequence of unbalanced buckets
 Exceptionally long buckets unacceptably long lookup time!

Solution: two-choice-based hashing: each key would be hashed to two

candidate HT directory buckets, using two hash functions h1 and h2,

and inserted into the one that has currently fewer elements

How to know in which bucket to search for a lookup?

 Use of Bloom filter for each bucket. The filter is dimensioned one

byte per key and assume average number of items in each bucket.

50

Background on Bloom Filter

 Data structure proposed by Burton Bloom

 Randomized data structure

– Strings are stored using multiple hash functions

– It can be queried to check the presence of a string

 Membership queries result in rare false positives but

never false negatives

 Originally used for UNIX spell check

 Modern applications include :

– Content Networks

– Summary Caches

– route trace-back

– Network measurements

– Intrusion Detection

51

Programming a Bloom Filter

52

Querying a Bloom Filter

53

Querying a Bloom Filter (False Positive)

54

Optimal Parameters of a Bloom Filter

Bloom filter computes k hash functions on input

Key Point : false positive rate decreases exponentially

with linear increase in number of bits per string (item)

55

The consequence

of spreading a

chain of entries in

a bucket across

pages.

Use compaction to

ameliorate the

issue.

Compaction in SkimpyStash

56

 Long/Unpredictable/unbounded lookup time.

The Weaknesses of SkimpyStach

57

Design III: BufferHash using Equally-sized Levels

Anand et al., Cheap and Large CAMs for High Performance

Data-Intensive Networked Systems in NSDI’10

Move entire hash tables to the disk/flash

The store consists of multiple levels and each is

organized as a hash table.

58

The approach: Buffering insertions

Control the impact of random writes

Maintain small hash table (buffer) in memory

As in-memory buffer gets full, write it to flash

• We call in-flash buffer, incarnation of buffer

Incarnation: In-flash

hash table

Buffer: In-memory

hash table

DRAM Flash SSD

59

Two-level memory hierarchy

DRAM

Flash

Buffer

Incarnation table

Incarnation

1 2 3 4

Net hash table is: buffer + all incarnations

Oldest

incarnation

Latest

incarnation

60

Lookups are impacted due to buffers

DRAM

Flash

Buffer

Incarnation table

Lookup key

In-flash

look ups

 Multiple in-flash lookups. Can we limit to only one?

 Use Bloom Filters

4 3 2 1

61

Bloom filters for optimizing lookups

DRAM

Flash

Buffer

Incarnation table

Lookup key

Bloom filters

In-memory

look ups
False positive!

Configure carefully!

4 3 2 1

2 GB Bloom filters for 32 GB Flash for false positive rate < 0.01!

62

Update: naïve approach

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Update key

Expensive

random writes

 Discard this naïve approach

4 3 2 1

63

Lazy updates

DRAM

Flash

Buffer

Incarnation table

Bloom filters

Update key

Insert key

4 3 2 1

 Lookups check latest incarnations first

Key, new

value

Key, old

value

64

Weaknesses of BufferHash

Excessively large number of (incarnations) levels makes BF less
effective.

Searching in individual incarnations is not efficient.

65

Design IV: SILT with Levels of

Dramatically-different Sizes
Read

Amplification

Memory overhead (bytes/entry)

FAWN-DS

BufferHash

SkimpyStash

SILT

Hyeontaek Lim et al, SILT: A Memory-Efficient, High-Performance Key-Value

Store, in SOSP’11.

66

Seesaw Game?

Memory efficiency High performance

FAWN-DS

BufferHash
SkimpyStash

How can we

improve?

67

SILT Sorted Index

(Memory efficient)

SILT Log Index

(Write friendly)

Solution Preview: (1) Three Stores

with (2) New Index Data Structures

Memory

Flash

SILT Filter

Inserts only go to Log

Data are moved in background

Queries look up stores in sequence (from new to old)

68

LogStore: No Control over Data Layout

6.5+ bytes/entry 1

Memory overhead Write amplification

Inserted entries

are appended

On-flash log

Memory

Flash

Still need pointers:

size ≥ log N bits/entry

SILT Log Index (6.5+ B/entry)

(Older) (Newer)

Naive Hashtable (48+ B/entry)

69

LogStore: Using Cuckoo Hash to Embed Buckets into HT Directory

How to find the alternative slot for displacement by storing hash
index in the tag?

70

HashStore: Remove in-memory HT (or the index)

HashStore saves

memory over

LogStore by

eliminating the

index and

reordering the on-

flash (key,value)

pairs from insertion

order to hash order.

71

SortedStore: Space-Optimized Layout

On-flash sorted array

Memory

Flash

SILT Sorted Index (0.4 B/entry)

Need to perform bulk-

insert to amortize cost

To merge HashStore entries into the SortedStore, SILT must

generate a new SortedStore

72
1.01 0.7 bytes/entry

5.4

Memory overhead

Read

amplification
Write

amplification

SILT’s Design (Recap)

On-flash sorted array

SILT Sorted Index

On-flash

log

SILT Log Index

On-flash hashtables

SILT Filter

Merge Conversion

<SortedStore> <LogStore> <HashStore>

73

Any Issue with SILT?

 SILT provides both memory-efficient and high-

performance key-value store

 Multi-store approach

 Entropy-coded tries

 Partial-key cuckoo hashing

 The weakness: Write amplification is way too

high!

74

Design V: Google’s BigTable and LevelDB

Chang, et al., Bigtable: A Distributed Storage System for

Structured Data in OSDI’06.

 A multi-layered LSM-tree structure

 Progressively sort data for small memory demand

 Small number of levels for effective BF use.

75

Scale Problem

• Lots of data

• Millions of machines

• Different project/applications

• Hundreds of millions of users

Storage for (semi-)structured data

No commercial system big enough

• Couldn’t afford if there was one

Low-level storage optimization helps

performance significantly

Much harder to do when running on top of a database layer

Design V: Google’s BigTable and LevelDB

to Scale Data Store

76

Bigtable

Fault-tolerant, persistent

Scalable

• Thousands of servers

• Terabytes of in-memory data

• Petabyte of disk-based data

• Millions of reads/writes per second, efficient

scans

Self-managing

• Servers can be added/removed dynamically

• Servers adjust to load imbalance

77

77

Data model: a big map
• <Row, Column, Timestamp> triple for key

• Each value is an uninterpreted array of bytes

• Arbitrary “columns” on a row-by-row basis

• Column family:qualifier. a small number of families and large

number of columns

• Lookup, insert, delete API

 Each read or write of data under a single row key is atomic

78

SSTable

Immutable, sorted file of key-value pairs

Chunks of data plus an index

• Index is of block ranges, not values

• Index loaded into memory when SSTable is opened

• Lookup is a single disk seek

Alternatively, client can load SSTable into memory

Index

64K

block

64K

block

64K

block

SSTable

79

Tablet

Contains some range of rows of the table

Unit of distribution & load balance

Built out of multiple SSTables

Index

64K

block

64K

block

64K

block

SSTable

Index

64K

block

64K

block

64K

block

SSTable

Tablet Start:aardvark End:apple

80

Table

Multiple tablets make up the table

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

81

Finding a tablet

• Client library caches tablet locations

82

Servers

Tablet servers manage tablets, multiple tablets per
server. Each tablet is 100-200 MBs

• Each tablet lives at only one server

• Tablet server splits tablets that get too big

Master responsible for load balancing and fault
tolerance

• Use Chubby to monitor health of tablet servers, restart
failed servers

• GFS replicates data. prefer to start tablet server on same
machine that the data is already at

83

Editing/Reading a table

Mutations are committed to a commit log (in GFS)

Then applied to an in-memory version (memtable)

Reads applied to merged view of SSTables & memtable

Reads & writes continue during tablet split or merge

SSTable

(sorted)

SSTable

(sorted)

Tablet

apple_two_E boat

Insert

Insert

Delete

Insert

Delete

Insert

Memtable

 (sorted)

84

Bigtable Tablet

LevelDB is similar to a single Bigtable tablet

85

Compactions

Minor compaction – convert a full memtable into an
SSTable, and start a new memtable

• Reduce memory usage

• Reduce log traffic on restart

Major compaction

• Merging compaction that results in only one SSTable

• No deletion records, only live data

86 86

Log-Structured Merge-Tree (LSM-tree)

• Optimized for fast random updates, inserts and deletes

with moderate read performance.

• Convert the random writes to sequential writes

– Accumulate recent updates in memory

– Flush the changes to disks sequentially in batches

– Merge on-disk components periodically

• At the expense of read performance

Management of SSTable -- LSM-tree

87 87

Google’s LevelDB: Progressively Increasing Level Size

MemTable

Write

Immutable
MemTable

Memory

Disk
Dump

……

…

Level 0

Level 1
10MB

Level 2
100 MB

Compaction
Log

Manifest

Current

SSTable

MemTable

K1 V1 K2 V2

K3 V3

Immutable
MemTable

SSTable

SSTable SSTable

SSTable SSTable

88

LevelDB Write Flow

89

LevelDB Read Flow

Bloom Filter

90

LevelDB Compact (L0/L1)

91

LevelDB Compact (L0/L1 Move)

92

Current KV storage systems have one or more of the issues:

(1)very high data write amplifications;

(2)Large index set; and

(3)dramatic degradation of read performance with overspill
index out of the memory.

LSM-trie:

(1)substantially reduces metadata for locating items,

(2) reduces write amplification by an order of magnitude,

(3) needs only at most two disk accesses with each KV read
even when only less than 10% of metadata (Bloom Filters)
can be held in the memory

Design VI: LSM-trie: An LSM-tree-based Ultra-

Large Key-Value Store for Small Data Items

93

LSM-trie: A New Level Growth Pattern

94

LSM-trie: Minimize Write Amplification

 To enable linear growth pattern, the SSTables in one

column of sub-levels of a level must have the same key

range.

 KV items are hashed into and organized in the store.

 160b-Hash key is generated with SHA-1 for uniform

distribution.

95

The Trie Structure

96

Compaction in LSM-trie

97

How about out-of-core the Bloom Filters?

 To scale the store to very large size in terms of both capacity

and KV-item count (e.g, a 10 TB store containing 100 billion

of 100-byte KV items). A big challenge on designing such a

large-scale store is the management of its metadata that often

have to be out of core (the DRAM).

 LSM-trie hashes keys into buckets within each SSTable

(Htable).

98

But the load on the buckets in an Htable may not be

balanced.

99

Load on the buckets in an Htable not be balanced.

100

Balance the load using item migration

 How to determine if an item has been migrated?

 Does BF still work after migration?

101

The load is balanced!

102

A Summary of the Use of 160b Hashkey

103

BF is clustered for at most one Access at each level

104

Prototyped LSM-trie

 32MB HTables and an amplification factor (AF) of 8.

 The store has five levels. In the first four levels, LSM-trie uses

both linear and exponential growth pattern.

 All the Bloom filters for the first 32 sub-levels are of 4:5 GB,

assuming a 64B average item size and 16 bit Bloom filter per

key. Adding metadata about item migration within individual

HTables (up to 0:5 GB), LSM-trie needs up to only 5GB

memory to hold all necessary metadata

 At the fifth level, which is the last level, LSM-trie uses only

linear growth pattern. As one sub-level at this level has a

capacity of 128 G, it needs 8 such sub-levels for the store to

reach 1 TB, and 80 such sub-levels to reach 10 TB.

 LSM-trie uses 16-bit-per-item Bloom filters, the false positive

rate is only about 5% even for a 112-sub-level 10 TB KV store.

105

Write Throughput

106

Write Amplification

107

Read Throughput

108

Summary

LSM-trie is designed to manage a large set of small data.

It reduces the write-amplification by an order of magnitude.

It delivers high throughput even with out-of-core metadata.

The LSM-trie source code can be downloaded at:

https://github.com/wuxb45/lsm-trie-release

109

Atlas: Baidu’s Key-value Storage System

for Cloud Data

110

Cloud Storage Service

 Cloud storage services become increasingly popular.
 Baidu Cloud has over 200 million users and 200PB user data.

 To be attractive and competitive, they often offer large free
space and price the service modestly.
 Baidu offers 2TB free space for each user.

 The challenge is how to economically provision resources and
also achieve service quality.
 A large number of servers, each with local large storage space.

 The data must be reliably stored with a high availability.

 Requests for any data in the system should be served reasonably fast.

111

Challenges on Baidu’s System

 The Challenges
 Can the X86 processors be efficiently used?

 Can we use a file system to store data at each server?

 Can we use an LSM-tree-based key-value store to store the data?

Distribution of requests on a typical day in 2014.

 The workload
 Request size is capped at 256KB for system efficiency.

 Majority of the requests are for data between 128KB and 256KB.

112

Challenge on Processor Efficiency
 The X86 processors (two 4-core 2.4GHz E5620) were

consistently under-utilized
 Less than 20% utilization rate with nine hard disks installed on a server.

 Adding more disks is not an ultimate solution.

 The ARM processor (one 4-core 1.6GHz Cortex A9) can provide
similar I/O performance.
 The ARM processor is more than 10X cheaper and more energy-efficient.

 Baidu’s customized ARM-based server.

 Each 2U chassis has six 4-core Cortex A9
processors.

 Each processor comes with four 3TB SATA
disks.

 However, each processor can support
only 4GB memory.
 On each chassis only 24GB memory available

for accessing data as large as 72TB data.

113

Challenge on Using a File System

Memory cannot hold all metadata.
 Most files would be of 128-256KB.

 Access on the storage has little locality.

 More than one disk accesses are often required to access a
file.

The approach used in Facebook’s Haystack is not
sufficient.
 There are 3.3GB metadata for 16TB 128KB-data.

 System software and buffer cache also compete for 4GB
memory.

114

Memory

Challenge on Using LSM-tree Based Key-value Store

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels of the store.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

115

Memory

Challenge on Using LSM-tree Based Key-value Store

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

116

Memory

Challenge on Using LSM-tree Based Key-value Store

 LSM-tree-based KV store is designed for storing many small
key-value items, represented by Google’s LevelDB.

 The store is memory efficient.
 The metadata is only about 320MB for 16TB 128KB-data.

 However, the store needs constant compaction operations to
sort its data distributed across levels for such a small metadata.
 For a store of 7 levels, the write amplification can be over 70.

 Very limited I/O bandwidth is left for servicing frond-end user requests.

117

Value Key

Reducing Compaction Cost
 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

?

? ? ? ?

118

Pointe

r
Value Key

Reducing Compaction Cost
 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

119

Reducing Compaction Cost
 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

120

Reducing Compaction Cost
 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

121

Reducing Compaction Cost
 In a KV item, value is usually much larger than the key.

 Values are not necessary to be involved in compactions.

 Move and place the values in a fixed-size container (block),
and replace the values with pointers in KV items.

 Memory

Patch(64MB)

122

Features of Baidu’s Cloud Storage System (Atlas)

 A hardware and software co-design with customized low-power
servers for high resource utilization

 Separate metadata (keys and offsets) and data (value blocks)
management systems.

 Data are efficiently protected by erasure coding.

Memory
Block (64MB)

Storage of Metadata

Keys Values

Storage of Data

123

Big Picture of the Atlas System

PIS (Patch and Index System)

RBS (RAID-like Block

System)

Patch (64MB)

Keys

Values

Block (64MB)

124

Distribution of User Requests

Patch (64MB)

PIS slice

Keys

Values

Patch (64MB)

Keys

Values

PIS slice

……

Atalas Clients

(Applications)

Key hashing Key hashing

125

Redundancy for Protecting KV items

Three PIS slice units in a PIS

slice

R
B

S
 (

R
A

ID
-l

ik
e

B
lo

ck

S
y
st

em
) Block (64MB)

Patch (64MB)

Keys

Values A
 P

IS
 S

li
ce

… Eight

8MB-parts

Four RS-coded parts

126

The Architecture of Atlas

PIS

Slice

PIS

Slice

RBS

Partserver

RBS

Partserver

Applicatio

n

Shadow

RBS

Master

RBS

Master

Use LSM-tree KV Store:

Key (logical) parts/block

(logical) parts/block

 Physical Partservers

127

Serving a Write Request

RBS

Partserver
RBS

Partserver

Applicatio

n

RBS

Master

(1) Send request to a PIS slice.

(4) Obtain 12 + 3

partserver IPs

(2) Write the KV item in the

patch, and acknowledge client;

Index

Patch

(5) Write the parts to the partsevers.

(3) If the patch is full, convert it

into a block, and partition and

compute it into 8+4 parts.

(4) Record (key, blockID, offset)

into the index.
(6) Record (blockID, list

of partserver IPs)

PIS

Slice

128

Serving a Read Request

128

RBS

Partserver

RBS

Partserver

Applicatio

n

RBS

Master

(1) Send request to a PIS slice.

(4) Get partserver IP for

the block ID

(2) If the KV item is in the

patch, return the value;
Index

Patch

(5) Retrieve the value from

the partserver

(6) Part recovery is initiated if it is a failure.

(3) Otherwise, Get() block ID

and offset from the index.

129

Serving Delete/Overwrite Requests
 KV pairs stored in Atlas are immutable.

 Blocks in Atlas are also immutable.

 A new KV item is written into the system to service a
delete/overwritten request.

 Space occupied by obsolete items are reclaimed in a garbage
collection (GC) process.

 Periodically two questions are asked about a block in the RBS
subsystem, and positive answers to both lead to a GC.

1) Is the block created earlier than a threshold (such as one week ago)?

2) Is the ratio of valid data in the block smaller than a threshold (such as 80%)?

130

Atlas’s Advantages on Hardware Cost and

Power

 Atlas saves about 70% of hardware cost per GB storage

 Using ARM servers to replace x86 servers

 Using erasure coding to replace 3-copy replication.

 Power consumption is reduced by about 53% per GB storage.

 The ARM processors are more power efficient.

 The ARM server racks are more space efficient, reducing energy
cost for power supply and thermal dissipation.

131

Comparison with the Prior System
Reference system (pre-Atlas)

• Similar PIS subsystem.

• All data are managed solely by the LSM-tree-based KV store.

Run on a 12-server X86 cluster.

 Atlas’s throughput at one node

Read : Write = 3:1 All writes

132

Atlas on a Customized ARM cluster

A cluster of 12 ARM servers.

Each hosts multiple PIS slices and RBS partservers.

Each server has a 4-core Marvell processor, 4GB
memory, four 3TB disks.

1Gbps full-duplex Ethernet adapter.

Request size is 256KB.

133

Throughput at One Node with Diff. Request Types

All writes All Reads

Read : Write = 3:1

More I/O and

Network bandwidth

Consumed

134

Latencies with Diff. Request Types

All writes All Reads

135

Throughput at one Node of a Production

System

Reads

write

136

Disk Bandwidth at one Node of a Production

System

Reads

write

137

Summary

 Atlas is an object store using a two-tier design separating

the managements of keys and values.

 Atlas uses a hardware-software co-design for high cost-

effectiveness and energy efficiency.

 Atlas adopts the erasure coding technique for space-efficient

data protection.

